Taraxacum mongolicum Hand.-Mazz. derived extracellular vesicles alleviate mastitis

via NLRP3 inflammasome and NF-KB/MAPK pathways

Yuan Sun,^a Ying Liu,^a Jinxian Li,^a Shan Huang,^b Yiyang Du,^a Danyang Chen,^a Min Yang^{a*} and Yinghua Peng^{a*}

alnstitute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences,

Changchun, Jilin, 130112, China

^bSchool of Chemistry and Life Science, Changchun University of Technology, Changchun, jilin,130012, China

Correspondence: Yinghua Peng, Min Yang, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China, Email: pengyinghua@caas.cn, yangmin01@caas.cn

Table 1: The primer sequences of inflammatory genes	
Gene	Primer sequence
GAPDH	F: GGTCGGTGTGAACGGATTTGG
	R: GCCGTGGGTAGAGTCATACTGGAAC
TNF-α	F: ATGTCTCAGCCTCTTCTCATTC
	R: GCTTGTCACTCGAATTTTGAGA
IL-1β	F: GCTGCTTCCAAACCTTTGAC
	R: AGCTTCTCCACAGCCACAAT
IL-6	F: CTCCCAACAGACCTGTCTATAC
	R: CCATTGCACAACTCTTTTCTCA
INOS	F: CCTTCCGAAGTTTCTGGCAGCAGC
	R: GGCTGTCAGAGCCTCGTGGCTTTGG
COX2	F: ACACACTCTATCACTGGCACC
	R: TTCAGGGAGAAGCGTTTGC
NLRP3	F: GAGCTGGACCTCAGTGACAATGC
	R: ACCAATGCGAGATCCTGACAACAC-3
ASC	F: CAGGCGAGCAGCAGCAAGAG
	R: CAAGAGCGTCCAGGATGGCATC
Caspase-1	F: ACAACCACTCGTACACGTCTTGC
	R: CCAGATCCTCCAGCAGCAACTTC

Western blot raw data:

Blots

Merge

Bright

IL-1 β in Fig. 2F

GAPDH for IL-1β

IL-6 in Fig. 2F

β -actin for IL-6

50 kDa 40 kDa 35 kDa

COX2 in Fig. 2F

GAPDH for COX2

GADPH

50 kDa 40 kDa 35 kDa

NLRP3 in Fig. 3D

GAPDH for NLRP3

ASC in Fig. 3D

β -actin for ASC

Caspase-1 in Fig. 3D

GAPDH for Caspase-1

p-P65 in Fig. 3H

GAPDH for p-P65

70 kDa 50 kDa

p-JNK in Fig. 3H

GAPDH for p-JNK

40 kDa 35 kDa

β-actin for p-P38

p-ERK in Fig. 3H

50 kDa 40 kDa

GAPDH for p-ERK

ASC in Fig. 6A

β -actin for ASC

Caspase-1 in Fig. 6A

50 kDa 40 kDa 35 kDa

β-actin for Caspase-1

p-P65 in Fig. 6D

70 kDa 50 kDa

 β -actin for p-P65

50 kDa 45 kDa 35 kDa

p-JNK in Fig. 6F

GAPDH for p-JNK

p-ERK in Fig. 6F

GAPDH for p-ERK

