1	
2	Supporting information
3	
4	
5	Conductive Nano Nickel Oxide/Hydroxide Paper Electrochemical Sensor for Serotonin
6	Detection in Genetically Engineered Drosophila
7 8	Sharmila Prashanth ^a , Manvitha Kadandelu ^b , Shamprasad Varija.Raghu ^b , K. Sudhakara Prasad. ^a * Airody Vasudeva Adhikari ^{a.c} *
9 10	^a Nano Material Research laboratory, Smart Materials and Devices, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575 018, India
11 12	^b Division of Neuroscience, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, India
13	° Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
14	
15	
16	Table of Contents

SL NO

SL NO.	CONTENTS	PAGE NO.
1.	AFM data table	2
2.	FT-IR and	2
3	XPS analysis for PPE (table and figure) and PPE-Ppy-rGO	3
4.	CV for PPE-Ppy-rGO-NiO/Ni(OH) ₂	3
5.	Electrochemical characterization and ECSA estimation using Ru(NH ₃) ₆ Cl ₃	4
6.	CV analysis for 5-HT	5
7.	Interference studies	6
8.	Table comparison for 5-HT sensors	7
9.	Repeatability data	8
10.	HPLC analysis of 5-HT with genetically engineered <i>Drosophila</i>	8
11.	5-HT Spike sample analysis with genetically engineered <i>Drosophila</i>	9
12.	References	9

The RMS and mean roughness values increased from 10.04 ± 2.9 nm and 8.3 ± 2.6 nm (bare 19 PPE) to 13.3 ± 5.2 nm and 10.4 ± 3.7 nm (Ppy-rGO), and significantly to 49.5 ± 18.1 nm and 20 38.5 ± 13.2 nm after NiO/Ni(OH)₂ deposition, respectively. The values are presented as mean 21 \pm standard deviation, calculated from multiple measurements across different surface regions 22 using Gwyddion software. The substantial increase in roughness following each modification 23 step suggests statistically relevant changes in surface morphology. These morphological 24 features, including mountain-like ridges and increased thickness, contribute to an enhanced 25 electroactive surface area, which is advantageous for electrochemical sensing. Detailed 26 roughness parameters and thickness values, calculated using Gwyddion software, are provided 27 in Table S1. 28

Modified electrode	RMS Roughness (nm)	Mean Roughness (nm)
Bare PPE	10.04 ± 2.9	8.3 ± 2.6
PPE-Ppy-rGO	13.3 ± 5.2	10.4 ± 3.7
PPE-Ppy-rGO-NiO/Ni(OH) ₂	49.5 ± 18.1	38.5 ± 13.2

51 Figure S1. FT-IR spectra obtained for PPE (black), PPE-Ppy-rGO (red), and PPE-Ppy-rGO52 NiO/Ni(OH)₂ (blue)

Figure S2. XPS Survey scan for (A) PPE (B) PPE-Ppy-Rgo (C) PPE-Ppy-rGO-NiO/Ni(OH)₂
 56
 57

Electrode	Atomic %			At	omic ratio		
	C1s	O1s	N1s	Ni2p	O1/C1	N1/C1	Ni/C1
PPE	82.99	17.01	-	-	0.0249	-	-
PPE-Ppy-rGO	71.71	26.91	1.38	-	0.375	0.0192	-
PPE-Ppy-rGO- NiO/Ni(OH) ₂	73.61	23.62	1.99	0.79	0.227	0.026	0.011

61 Table S2. Atomic % and Atomic ratio calculated from the XPS data obtained for various

62 electrodes.

Figure S3. CV curves for the PPE-Ppy-rGO-NiO/Ni(OH)₂ nanocomposites electrodes,
recorded over a potential range of -0.1 to 0.6 V at a scan rate of 0.05 V/s for 8 cycles in 0.1 M
KOH

Figure S4. Cyclic voltammetry (CV) analysis of PPE, PPE-Ppy-rGO, and PPE-Ppy-rGO-87 NiO/Ni(OH)₂ in 1 mM Ru(NH₃)₆Cl₃ and 0.1 M KCl, measured at a scan rate of 0.05 V s⁻¹.

Electrochemical active surface area calculated using the Randles–Sevcik equation, where D
 calculated as from previous reports ^{1,2}

Electrode	Electroactive	$D/cm^{2}/s^{-1}$	A_{geo}/cm^2	A_{real}/cm^2	%
	probe				Real
Bare PPE	Ru(NH ₃) ₆ Cl ₃	9.1 ×10 -6	0.07	0.37	528.6
PPE-Ppy-rGO	Ru(NH ₃) ₆ Cl ₃	9.1 ×10 -6	0.07	0.46	657.1
PPE-Ppy-rGO-	$Ru(NH_3)_6Cl_3$	9.1 ×10 -6	0.07	0.99	1414.3
$NiO/Ni(OH)_2$					

96 Table S3. Electrochemical active surface area analysis of modified electrodes97

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129	Figure S5. Cyclic voltammetry (CV) analysis of PPE-Ppy-rGO-NiO/Ni(OH) ₂ in the absence (black) and in presence of 1 mM 5-HT 0.1 M PB solution (pH 7.4) (red) measured at a scan rate of 0.05 V s ⁻¹ .
130	
131	
132	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	

Figure S6. SWV for interference studies of the developed PPE-Ppy-rGO-NiO/Ni(OH)₂ sensor against various interfering species, (A) 5-HT (B) 5-HT + DA (C) 5-HT + NE (D) 5-HT + UA (E) 5-HT + E (F) 5-HT + AA each at a concentration of 100 μ M with 5-HT.

-

Sensing materials	Method of detection	Linear range	LOD nM	LOD ng/mL	Real samples analysed	Ref.
Nb ₂ CT _x /PCN	DPV	1 μM – 100 μM	63.24	11.14	Human serum	3
Nafion-CNT/EC CFMEs	CV	100 μM – 800 μM	140	24.6	Artificial urine sample	4
FeC-AuNPs- MWCNT	SWV	$\begin{array}{c} 0.05 \ \mu M-20 \\ \mu M \end{array}$	17	2.99	Urine sample	5
Aptamer-based biosensor	EIS	25 μM - 150 nM	5.6	0.99	-	6
Au-CNT membrane electrode	CV	$\begin{array}{c} 0.5 \ \mu M - 10 \\ \mu M \end{array}$	30	5.29	Cell media	7
<i>Dy</i> ₂ <i>MoO</i> ₆ nanosheets	DPV	10 μM - 130 nM	340	59.9	Human blood and urine	8
RGO/p-PDA/β- Ni(OH) ₂	Amperometr y	5 μM - 325 μM	46.2	8.14	Urine	9
PPE-Ppy-rGO- Fe ₂ O ₃	DPV	0.01 μM - 500 μM	22	3.88	Drosophila melanogaster brain sample	10
PPE-Ppy-rGO- Ni/Ni(OH) ₂	SWV	0.007 nM - 0.48 nM 0.48 nM - 500 µM	0.024 383.7 nM	0.0042 67.61	Genetically modified Drosophila melanogaster brain sample	Present work

171

172

174 Normal serotonin (5-HT) concentrations typically range from 270 to 1490 nM in serum,

- 176 approximately
- 178 in urine, and are
- 189 in cerebrospinal
- 182 below 0.0568
- 183

....

- 184 185
- 186
- 187
- 188

Days

300 to 1650 nM markedly lower fluid (CSF), often nM.¹¹⁻¹²

- 189
- 190
- 191
- 192
- 193
- 194
- 195 196
- 197
- 198
- 199
- 200
- 201
- 202

Figure S7. Histogram presenting the repeatability study for three PPE-Ppy-rGO- NiO/Ni(OH)2 203 204 electrode. 205

(B) $\mathbb{P}^{\mathsf{Chr}}$ <Chr mV ogram> **(A)** Detector A 280 <Peak Table> <Peak Table Detector A 280 Peak# Ret. Tin Detector A 280nm Peak# Ret. Time 1 3.915 Serotonin NTU 19922 0.836 **TRH-Gal4** TRH-Gal4/UAS - TetX

TRH – Gal4/rpr

- 207 208
- Figure S8. HPLC response for genetically engineered Drosophila melanogaster brain 209 samples (A) TRH-Gal4 (B) TRH-Gal4/UAS-TeTxLC (C) TRH-Gal4/UAS-rpr 210
- 211
- 212

Sample (Genetically engineered <i>Drosophila melanogaster</i> brain sample)	Spikes	Added amount of 5-HT (μM)	Found amount Of 5-HT (µM)	Recovery (%)
	-	0.0	27.6	-
TRH-Gal4	1st spike	8	35	98.3
	2nd spike	7.0	42	98.6
	3rd spike	5.0	46.5	97.7
TRH-Gal4/UAS -TeTxLC	-	0.0	11.9	-
	1st spike	9.0	21	100.5
	2nd spike	7.0	27	96.8
	3rd spike	5.0	32.2	97.9
	-	0.0	7.59	-
TRH-Gal4/UAS -rpr	1st spike	8.3	15.6	98.1
	2nd spike	6.3	21.9	98.7
	3rd spike	5	27.3	100.4

Table S5. Spiked real sample analysis

References

217	(1) F. Marken, J. C. Eklund, R. G. Compton, Journal of Electroanalytical Chemistry, 1995, 395,
218	335-39. https://doi.org/10.1016/0022-0728(95)04268-S.
219	(2) A. GM. Ferrari, C. W. Foster, P. J. Kelly, D. A. C. Brownson, and C. E. Banks,
220	Biosensors 2018, 8, 53. https://doi.org/10.3390/bios8020053
221	(3) M. Mufeeda, M. Ankitha, and P. A. Rasheed, ACS Applied Nano Materials, 2023, 6,
222	21152-21161. https://doi.org/10.1021/acsanm.3c04222.
223	(4) J. Han, J. M. Stine, A. A. Chapin, and R. Ghodssi, <i>Analytical Methods</i> 2023, 15, 1096–1104.
224	https://doi.org/10.1039/D2AY01627C
225	(5) B. Wu, S. Yeasmin, Y. Liu, LJ. Cheng, Sensors and Actuators B: Chemical, 2022, 354,
226	131216. https://doi.org/10.1016/j.snb.2021.131216.
227	(6) H. M. N. Ahmad, A. Andrade, E. Song, <i>Biosensors</i> 2023, 13, 983.
228	https://doi.org/10.3390/bios13110983.
229	(7) A. A. Chapin, P. R. Rajasekaran, D. N. Quan, L. Hu, J. Herberholz, W. E. Bentley, R.
230	Ghodssi, Microsystems and Nanoengineering 2020, 6 (1), 1–13.
231	https://doi.org/10.1038/s41378-020-00184-4.
232	(8) G. Singh, A. Kushwaha, M. Sharma, Materials Chemistry and Physics 2022, 279, 125782.
233	https://doi.org/10.1016/j.matchemphys.2022.125782.
234	(9) A. K. Mohiuddin, S. Jeon, Sensors and Actuators A: Physical, 2022, 348, 113974.
235	https://doi.org/10.1016/j.sna.2022.113974.
236	(10) S. Prashanth, R. A. Aziz, S. V. Raghu, YB. Shim, K. S. Prasad, A. V. Adhikari, Material
237	Advances. 2024, 5, 1185-98. https://doi.org/10.1039/D3MA00777D
238	(11) M. Lindström, N. Tohmola, R. Renkonen, E. Hämäläinen, C. Schalin-Jäntti, O. Itkonen,
239	Clinica Chimica Acta, 2018, 482, 78-83, https://doi.org/10.1016/j.cca.2018.03.030
240	(12) K. Khoshnevisan, E. Honarvarfard, F. Torabi, H. Maleki, H. Baharifar, F. Faridbod, B.
241	Larijani, M. R. Khorramizadeh, Clinica Chimica Acta, 2020, 501,112-19.
242	https://doi.org/10.1016/j.cca.2019.10.028.