SUPPORTING INFORMATION

Ultrasonic activation of polymer-drug conjugates for targeted and combinational pancreatic cancer therapy

Dimitra Toumpa^a, Athina Angelopoulou^a, Konstantinos Avgoustakis^b, George Pasparakis^{a,*}

^a Department of Chemical Engineering, University of Patras, Patra 26504, Greece

^b Department of Pharmaceutics, University of Patras, Patra 26504, Greece

Table of Contents

1.	Chemistry	3
	.1. ¹ H and ¹³ C NMR of prodrugs synthetic route	3
	2. ¹ H NMR of the polymers	9
	3. SEC of the polymers	11
	.4. CAC of the polymers	11
2.	Nanoparticles (NPs)	12
	.1. DLS of the NPs	12
	2. TEM of the NPs	14
3.	Release studies	14
4.	XPS analysis of ZnPc	16
5.	DPBF assay	18
6.	In vitro studies	18
	.1. Cytotoxicity of US	18
	5.2. IC ₅₀ values for 48h	20
	3. Controls for cytotoxicity	20
	5.4. Synergism	21
	5.5. Efficacy of the treatments	22
7.	Literature	24

1. Chemistry

Figure S1: HPMA-Suc ¹H NMR spectra.

Figure S2: HPMA-Suc ¹³C NMR spectra.

Figure S3: HPMA-Suc-CPT ¹H NMR spectra.

Figure S4: HPMA-Suc-CPT ¹³C NMR spectra.

Figure S5: HPMA-Suc-GEM ¹H NMR spectra.

Figure S6: HPMA-Suc-GEM ¹³C NMR spectra.

Figure S7: HPMA-SS ¹H NMR spectra.

Figure S8: HPMA-SS ¹³C NMR spectra.

Figure S9: HPMA-SS-CPT ¹H NMR spectra.

Figure S10: HPMA-SS-CPT ¹³C NMR spectra.

Figure S11: HPMA-SS-GEM ¹H NMR spectra.

Figure S12: HPMA-SS-GEM ¹³C NMR spectra.

1.2. ¹H NMR of the polymers

Figure S13: PEG₁₀₀₀₀-(HPMA-Suc-CPT)₁₀ ¹H NMR spectra.

Figure S14: PEG₁₀₀₀₀-(HPMA-SS-CPT)₁₃ ¹H NMR spectra.

Figure S15: PEG₁₀₀₀₀-(HPMA-Suc-GEM)₂₅ ¹H NMR spectra.

Figure S16: PEG₁₀₀₀₀-(HPMA-SS-GEM)₁₉ ¹H NMR spectra.

1.3. SEC of the polymers

Figure S17: SEC chromatograms for the PDCs.

1.4. CAC of the polymers

Figure S18: CAC graphs for the CPT-PDCs.

Figure S19: CAC graphs for the GEM-PDCs.

2. Nanoparticles (NPs)

2.1. DLS of the NPs

Figure S20: DLS for the CPT NPs.

Figure S21: DLS for the GEM NPs.

Figure S22: DLS of the NPs with combinations of the PDCs.

2.2. TEM of the NPs

Figure S23: TEM of the NPs formulated from one type of PDC (first line) and their combinations (second line).

3. Release studies

Figure S24: Release profile of **P1** NPs in different US and pH conditions a) without Pc, and b) with Pc.

Figure S25: Release profile of **P2** NPs in different US and pH conditions a) without Pc, and b) with Pc.

Figure S26: Release profile of **P3** NPs in different US and pH conditions a) without ZnPc, and b) with ZnPc.

Figure S27: Release profile of **P4** NPs in different US and pH conditions a) without ZnPc, and b) with ZnPc.

4. XPS analysis of ZnPc

The C 1s spectra is deconvoluted into a total of 5 peaks:¹

- C=C at 284.8 eV
- N-C-N at 286.0 eV
- N=C-N at 287.2 eV
- π - π * shake up transition peak present at 289.0 eV due to the aromatic ring
- COx surface species present due to contamination in the chamber at 286.3 eV.

The N 1s spectra deconvoluted into three peaks:²

- Pyrrolic N at 398.7 eV (quoted N₁)
- Bridging N at 399.0 eV (quoted N₂)
- The N₃ species peak is attributed to demetallized Pc centers, in combination with contribution from N satellite peaks.^{3,4}

The Zn 2p peak was also detected at 1022.2 eV and 1045.2 eV, for the $2p_{3/2}$ and $2p_{1/2}$ peaks respectively. These reported binding energies are in good agreement with previous studies into metalated ZnPc.²

The O 1s peak was also detected while scanning the sample.

Using relative sensitivity factors as mentioned above the atomic ratios are derived:

Element	Surface at %
С	75.8
Ν	15.7
Zn	1.6
0	6.9

This allows for the calculation of the ratios of N/C and Zn/N:

- N/C = 0.20 (Expected 0.25)

— Zn/N = 0.10 (Expected 0.12)

The results of the analysis are in good agreement with the expected values, however XPS spectra suggests not all Pc molecules are metalated.

Figure S28: XPS spectra of ZnPc.

5. DPBF assay

Figure S29: Controls of DPBF assay and terephthalic acid assay for Pc and ZnPc.

Figure S30: UV-Vis spectrum of DPBF assay for Pc and ZnPc.

6. In vitro studies

6.1. Cytotoxicity of US

To assess the cytotoxicity of the US, cell viability experiments (MTT assay) were performed on pancreatic cell line (PANC-1), in order to investigate which are the limits that US does not act a treatment by itself. Our goal is the therapeutic effect to be a result of the combination of the US with the nanoparticles, and not as a monotherapy. Thus, different time ranges were considered and in different intensity ranges. It was found that, after passing the limit of 1 min and intensity of 0.5 W/cm², the survival of the cells was dropping in almost half. Moreover, passing these limitations, the cells seem to create resistance in US and survive no matter the intensity and the time it was applied. Note that with the apply of US for 1 min with an intensity of 0.5 W/cm² the viability of the cells was 92.31%, meaning that the cells were not affected from the therapeutic effect of US (Fig. S18).

Figure S31: PANC-1 viability by the effect of US.

6.2. IC₅₀ values for 48h

Figure S32: IC₅₀ values of a) free CPT, NPs P1 and P2, b) free GEM, NPs P3 and P4, and c) there combinations: GEM & CPT, PEG-Suc-CPT & PEG-SS-CPT (P1 & P2), PEG-Suc-GEM & PEG-SS-GEM (P3 & P4), PEG-Suc-CPT & PEG-SS-GEM (P1 & P4), and PEG-Suc-GEM & PEG-SS-CPT (P3 & P2).

6.3. Controls for cytotoxicity

Figure S33: PANC-1 viability of PEG-HPMA-Suc and PEG-HPMA-SS.

Figure S34: PANC-1 viability of ZnPc and the combination of ZnPc with US.

6.4. Synergism

Figure S35: Synergy parameter for samples combinations alone.

6.5. Efficacy of the treatments

Drug	Treatment	IC ₅₀ (μΜ)	Folding improvement	E _{max} (% control) [±SE]	Efficacy change (fold)
СРТ	US	20	+7.7	32 (±5)	+1.3
P1		10	+14.2	18 (±9)	+2.2
P2		7	+2.4	11 (±5)	+3.9
GEM		105	+2.4	12 (±1)	+3.3
Р3		15	+42.1	12 (±1)	+4.2
P4		19	+53.3	31 (±1)	+1.6
GEM+CPT		5	+34.8	25 (±4)	+1.28
P1+P2		46	+3.3	24 (±2)	+1.7
P3+P4		4	+72.7	12 (±4)	+3.8
P1+P4		14	+3.7	25 (±2)	≡
P2+P3		1	+5	32 (±9)	≡
СРТ	Treatment 1	23.7	+6.5	47 (±6)	-1.1
P1		9.7	+14.6	40 (±1)	≡
P2		5.6	+3	43 (±4)	≡
GEM		50	+5.1	45 (±2)	-0.8

Table S1: IC_{50} and E_{max} values comparing the SDT treatments by drug class.

Р3		20	+32	39 (±8)	+1.3
P4		26	+39	41 (±2)	+1.2
GEM+CPT		4	+43.5	29 (±2)	+1.1
P1+P2		39	+3.4	30 (±1)	+1.4
P3+P4		4	+72.7	42 (±2)	+1.1
P1+P4		13	+4	38 (±2)	-0.65
P2+P3		0.3	+16.7	28 (±1)	+1.1
СРТ	Treatment 3	19	+8.1	38 (±6)	+1.1
P1		5	+28.4	45 (±3)	-0.9
P2		2	+8.5	40 (±7)	+1.1
GEM		12	+21.2	40 (±4)	≡
Р3		17	+31.1	30 (±7)	+1.7
P4		5.2	+195	38 (±2)	+1.3
GEM+CPT		0.75	+232	39 (±5)	-0.8
P1+P2		0.30	+507	28 (±4)	+1.5
P3+P4		0.7	+420	26 (±2)	+1.8
P1+P4		7	+7.4	42 (±9)	-0.6
P2+P3		1.1	+4.5	34 (±6)	-0.9

7. Literature

- 1. N. Kari, M. Zannotti, R. Giovannetti, D. Řeha, B. Minofar, S. Abliz and A. Yimit, *Nanomaterials (Basel)*, 2022, **12**.
- 2. D. Paoloni, G. Di Filippo, D. Cvetko, G. Kladnik, A. Morgante and A. Ruocco, *The Journal of Physical Chemistry C*, 2020, **124**, 22550-22558.
- 3. K. Eguchi, T. Nakagawa, Y. Takagi and T. Yokoyama, *The Journal of Physical Chemistry C*, 2015, **119**, 9805-9815.
- 4. Y. Bai, F. Buchner, M. Wendahl, I. Kellner, A. Bayer, H. Steinruck, H. Marbach and J. M. Gottfried, *Journal of Physical Chemistry C*, 2008, **112**, 6087-6092.