Supporting information

Portable Bilayer Microneedle Patch for Rapid and Patient-Friendly Administration of Rabies Immunoglobulin and Enhanced Wound Healing

Yaojun Lu ^{1, 4, 6, #}, Hanhan Xie ^{7, #}, Minyi Huang ^{2, 5}, Yuru Liu ^{2, 5}, Xingxing Li ³, Xiaofeng Guo ^{2, 5}, Jundong Shao ^{3, *}, Yongwen Luo ^{2, 5, *}, Lin Wang ^{1, 4, 6, *}

- 1. National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China. Email: wanglin3@scut.edu.cn
- 2. College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Email: ywluo@scau.edu.cn
- 3. Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510182, China. Email: shaojundong@gzhmu.edu.cn
- 4. School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China. Email: wanglin3@scut.edu.cn
- 5. Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642, China. Email: ywluo@scau.edu.cn
- 6. Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China. Email: wanglin3@scut.edu.cn
- 7. School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.

Corresponding author

Prof. J. D. Shao, *E-mail: shaojundong@gzhmu.edu.cn

Prof. Y. W. Luo, * ywluo@scau.edu.cn

Prof. L. Wang, *E-mail: wanglin3@scut.edu.cn

[#] These authors contributed equally to this work.

Supplementary figures

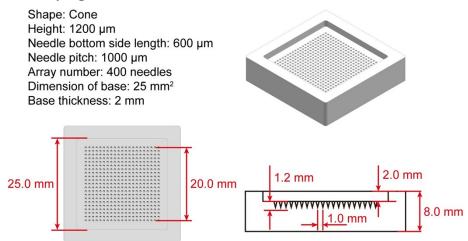


Figure S1 The parameters of our PDMS mold used for preparing bilayer MN patch.

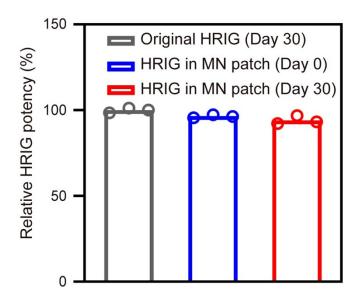
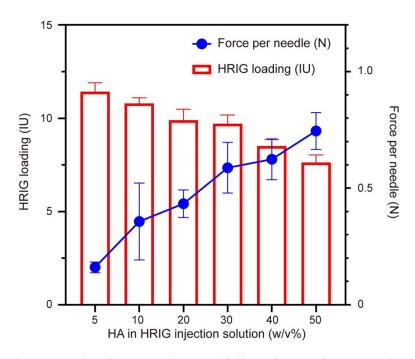
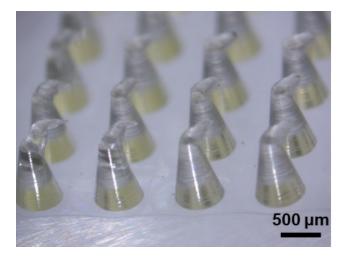
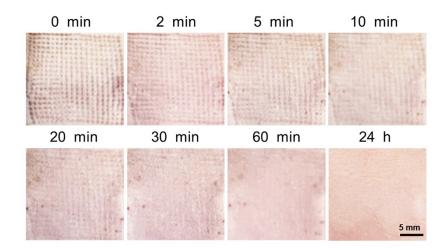
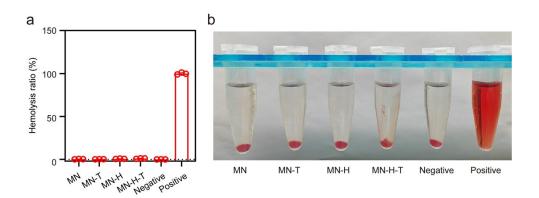



Figure S2 The stability of HRIG in MN patches at room temperature (n=3).

Figure S3 The HRIG loading capacity and failure force of MN patch composed of different HA loading in HRIG solution (n=3).

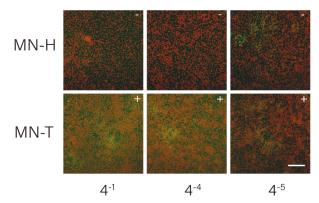

Figure S4 The image of the needles on the MN patch after mechanical test.

Figure S5 Appearance of the Sprague-Dawley (SD) rat skin following MN patch application for the indicated durations.

Figure S6 The hemolysis of different MN patch. (a) The hemolysis rate of different MN patch (n=3). (b) The images of the erythrocytes incubated with different MN patch extracts.

Figure S7 The representative fluorescence images of FAVN test. The fluorescence images of BHK-21 cells infected with RABV. The green fluorescence represented virus-infected cells, and the red fluorescence represented normal cells. The cells were strained with FITC anti-rabies monoclonal globulin (1:200) and Propidium iodide (1:500). The scale bar was 100 μ m.

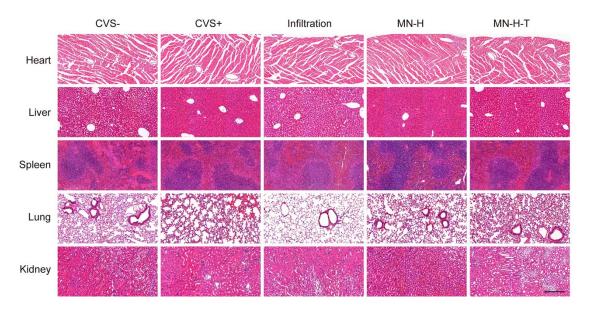


Figure S8 The H&E staining images of organs including heart, liver, spleen, lung, and kidney of mice after different treatments on the fourteenth day. The scale bar was 200 μm .