Enhanced Amperometric Detection of Tumor Biomarker Vanillylmandelic Acid Using NiMoO₄@C₃N₅ Hybrid Nanostructures

Nirmal Kumar Sakthivel^{1,2}, Sakthivel Kogularasu^{3,4}, Yung-Lung Chen^{5,6}, Wan-Ching Lin ^{7,8}, Guo-Ping Chang-Chien^{3,4*}, Hisham S.M. Abd-Rabboh⁹, Mani Govindasamy, ^{1,2*}

¹International Ph. D program in Innovative Technology of Biomedical Engineering & Medical Devices, Ming Chi University of Technology, New Taipei City, Taiwan.

² Research Center for Intelligence Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.

³Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833301, Taiwan.

⁴Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833301, Taiwan.

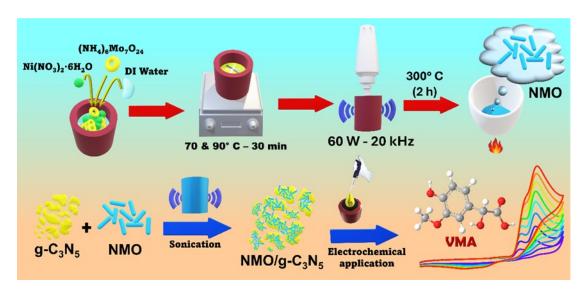
⁵Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan.

⁶Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.

⁷Department of Neuroradiology, E-da Hospital, I-Shou University, Kaohsiung 84001, Taiwan.

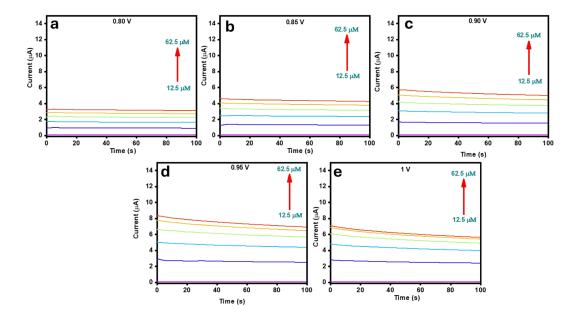
⁸Department of Neurosurgery, E-da Hospital, I-Shou University, Kaohsiung 84001, Taiwan.

⁹Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 62223, Saudi Arabia.


*Corresponding authors:

Prof. Guo-Ping Chang-Chien (guoping@gcloud.csu.edu.tw)

Prof. Mani Govindasamy (govindasamy 420700@gmail.com)


S1. Materials and instrumentations

For crystal structure confirmation was done by wielding XRD (Bruker D8 Advance Eco, China) instrument. The morphological studies of the composite were characterized by FESEM (JSM-7610F, Taiwan) and High-Resolution TEM (JEM-2100, Taiwan) instrument. The electron impedance spectroscopy (EIS) studies (t equilibration = 2s; Fixed potential (0.2 V; Number of frequencies, 56 = 9.2/dec; Frequency range from 0.1 Hz to 100000 Hz) was taken by using Palmsens4 FRA device. All voltammetry studies (CV & i-t) were grabbed by using Palmsens4 FRA electrochemical analyzer device. For electrochemical studies, common three electrode system was used where, glassy carbon electrode and rotating disk electrode as a working electrode, platinum wire as a counter electrode and Ag/AgCl (3M KCl) as a reference electrode.

Scheme S1. Diagrammatic illustration for the synthesis of NMO nanorods.

S2. Current Response for Potential Ranges

Figure S1. Amperometric response of different potentials in electrolyte solution pH 3.0. (a) 0.80 V, (b) 0.85 V, (c) 0.90 V, (d) 0.95 V, (e) 1.0 V.

S3. Long-Term Stability and Real Sample Analysis

Figure S2. (a) Amperometric curve of NMO@C₃N₅-1:2 for different days, real sample analysis with various spiked concentrations of VMA in (b) urine sample and (c) blood sample.

S4. Mechanism

Scheme S2. Electron transfer in electrochemical mechanism of VMA oxidation.

Table S1. Real sample analysis using NMO@ C_3N_5 -1:2 /GCE in human blood and urine samples.

Added (μM)	Blood		Urine	Urine	
	Found (µM)	Recovery(%)	Found (µM)	Recovery(%)	
0	0	-	0	-	
5	4.84	96.8	4.79	95.8	
10	9.76	97.6	9.68	96.8	
20	18.81	94.04	18.66	93.3	

30	28.96	96.43	28.53	95.09
50	47.82	95.64	47.14	94.28
70	67.48	96.36	66.93	95.57