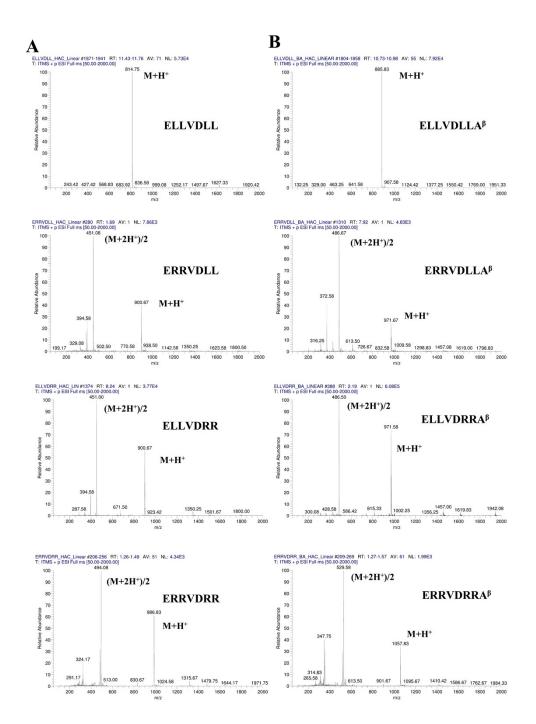
Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supplementary Info

Surfactin-inspired arginine- and lysine-rich peptides inhibit human insulin aggregation and prevent amyloid-induced cytotoxicity

Chinmaya Panda ¹, Sachin Kumar ², Sharad Gupta ³, Lalit M Pandey ¹

¹Bio-interface & Environmental Engineering Lab,
Department of Biosciences and Bioengineering,
Indian Institute of Technology Guwahati, Assam, 781039, India.


²Viral Immunology Lab,
Department of Biosciences and Bioengineering,
Indian Institute of Technology Guwahati, Assam, 781039, India.

³Biology of Amyloid Systems Lab,

Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.

*Corresponding author: Tel. +91-361-258-3201; Fax +91-361-258-2249

Email address: <u>lalitpandey@iitg.ac.in</u>

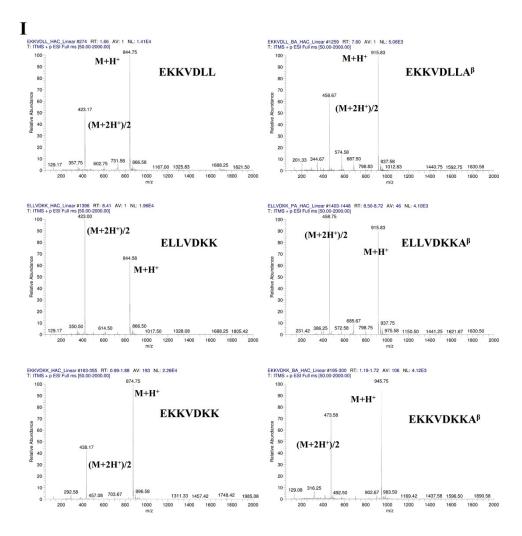
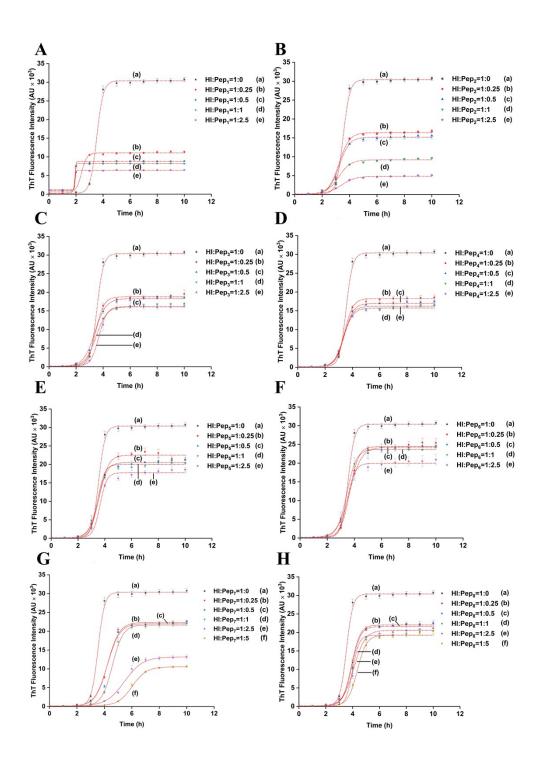
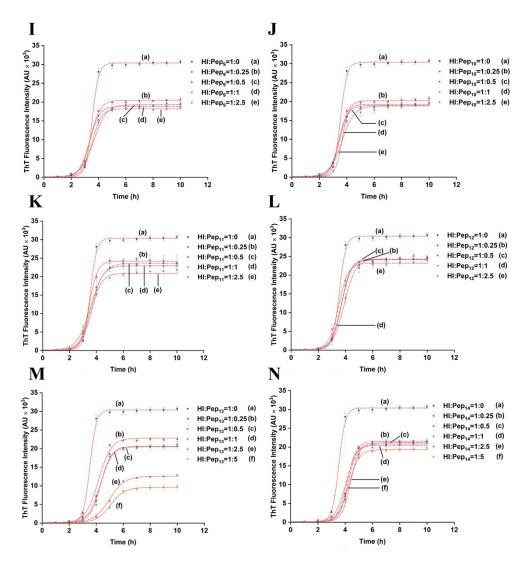




Fig. S1. MS spectra of all fourteen synthesized peptides showing respective masses.

Fig. S2. Time-course ThT fluorescence kinetics of HI at different molar ratios of HI to all fourteen peptides under aggregating conditions of pH 1.6 and 60 °C. Red dotted lines represent the fitted (modified Boltzmann equation) data. Error bars indicate standard deviations derived from three independent experiments.

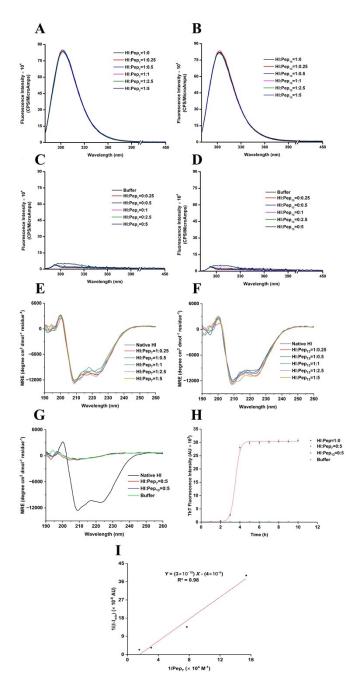
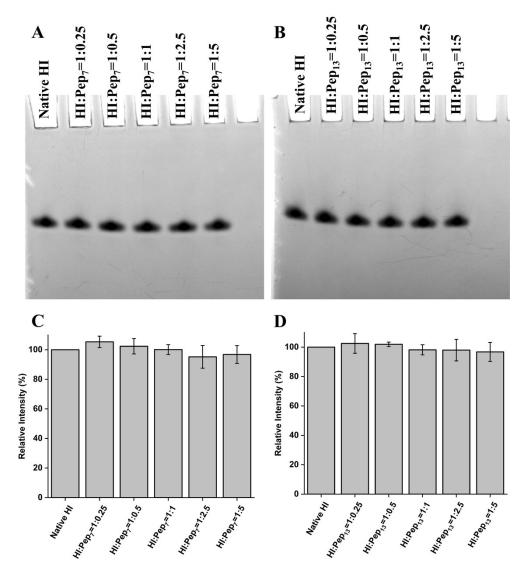
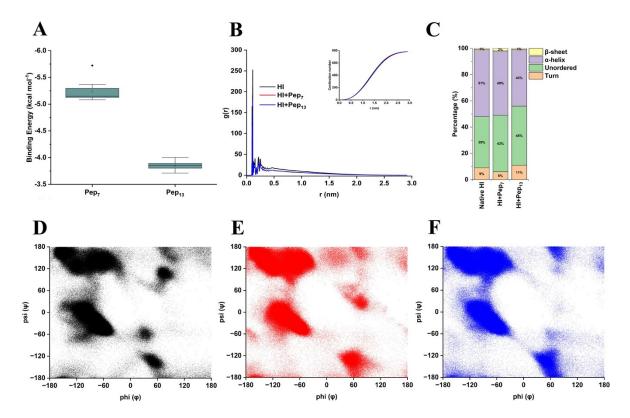
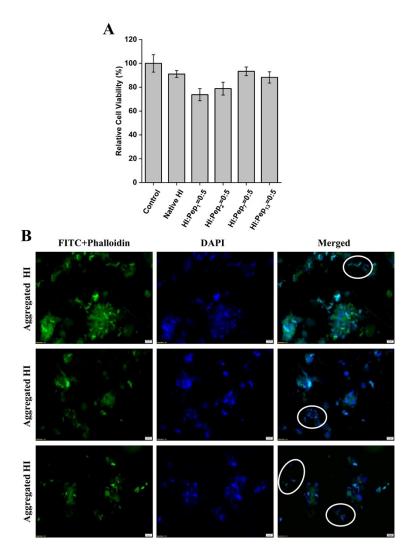


Fig. S3. (A and B). Intrinsic Tyr fluorescence spectra over $\lambda_{em} = 280$ -450 nm with $\lambda_{ex} = 268$ nm of HI with or without different molar ratios of Pep₇ and Pep₁₃ mixed and incubated at non-aggregation (pH 1.6, and RT) conditions. (C and D). Intrinsic Tyr fluorescence spectra of different molar ratios of only Pep₇ and Pep₁₃ without HI. (E and F). Circular dichroism spectra for HI with or without incubation having different molar ratios of Pep₇ and Pep₁₃ under non-aggregation conditions. (G and H). CD (G) and ThT kinetics spectra (H) of native HI, Pep₇, and Pep₁₃ at their highest usage concentrations, and buffer component. (I). Fitting of the fluorimetry intensity data of Pep₇ and HI using the Benesi-Hildebrand equation (y = (3×10⁻¹⁰)x - (4×10⁻⁶), R² = 0.98), where the binding coefficient (K_a) was determined to be (6.28 ± 0.15) ×10³ M⁻¹.






Fig S4. (A and B). Native PAGE bands of HI with or without different molar ratios of Pep₇ and Pep₁₃ under non-aggregation conditions. One representative image from the n=3 is shown here. (C and D). The relative band intensities of the native PAGE gels were quantified using ImageJ.

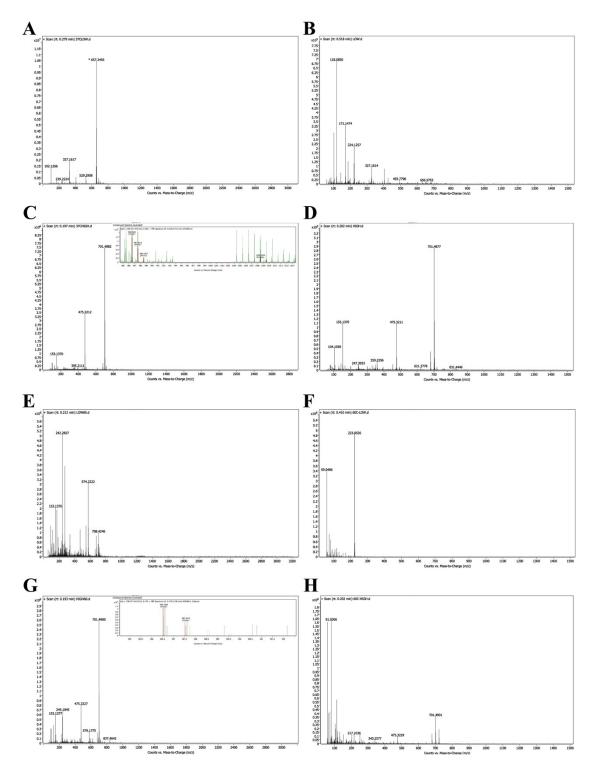

Fig S5. (A). TEM images of only Pep₇ and Pep₁₃. Panels I and II contain images at scales of 200 nm and 50 nm, respectively. (B). Hydrodynamic diameter of HI with or without different molar ratios of Pep₇ and Pep₁₃ under non-aggregation conditions measured using DLS. (C and D). ITC spectra of Pep₁ (C) and Pep₂ (D) with HI in 32 injections, representing the endothermic nature of the interaction for Pep₁.

Fig. S6. (**A**). Binding energy scores of Pep₇ and Pep₁₃ with monomeric HI obtained through Autodock Vina. (**B**). Radial distribution function (RDF) and corresponding coordination number (inset) obtained from the MD simulation for HI, HI+Pep₇, and HI+Pep₁₃, indicating no significant change in the presence of the peptides. (**C**). Secondary structural analysis of HI, HI+Pep₇, and HI+Pep₁₃, obtained from the MD trajectories. (**D-F**). Ramachandran plot obtained from the MD simulation of HI, HI+Pep₇, and HI+Pep₁₃.

Fig. S7. (A). MTT assay representing the cell viability of HepG2 cells incubated with only Pep₁, Pep₂, Pep₇ and Pep₁₃. **(B).** HepG2 cells incubated with aggregated HI samples, stained with FITC-Phalloidin and nuclear stain DAPI, represented at a scale bar of 20 μm. Aggregated HI samples were marked with white circles.

Fig. S8. The degradation pattern of Pep₇, observed using HR-MS under various conditions over 3 and 7 days. Temperature 37 °C and pH 1.6: for day 3 **(A)**, and day 7 **(B)**. Temperature 37 °C and pH 7.4: for day 3 **(C)** and day 7 **(D)**. Temperature 60 °C and pH 1.6: for day 3 **(E)**, and day 7 **(F)**. Temperature 60 °C and pH 7.4: for day 3 **(G)** and day 7 **(H)**. The inset figures in **(C)** and **(G)** represent the target screening of Pep₇ (C₃₈H₇₁N₁₉O₁₂) in the HR-MS spectra, representing a peak at 986.5 Da, corresponding to the M+H⁺ peak.

Table S1. The sequence of all fourteen peptides and other theoretical characteristics predicted using www.pep-calc.com, www.peptide2.com, and the Bachem peptide calculator. LC-MS reported the mass of the fourteen peptides.

Sl. No.	Peptide sequence	Theoretical molecular mass (Da)	Theoretical hydrophobicit y	Theoretical basicity and acidity	Observed molecular mass (Da)
	ELLVDLL			Acidic: 28.57%	
1	(original sequence) (Pep ₁)	813.48	71.43%	Basic: 0%	$M+H^+ = 814.75$
	ELLVDLLA ^β (Ester replaced with βA)	004.52	7.50/	Acidic: 25%	M.H. 005.02
2	(Pep ₂)	884.52	75%	Basic: 0%	$M+H^+ = 885.83$
		D-Leuci	ine replaced with	Arginine (R)	
	ERRVDLL	000.50	10.000	Acidic: 28.57%	M = 900.67
3	(Pep ₃)	899.52	42.86%	Basic: 28.57%	$(M+2H^+)/2 = 451.08$
4	ERRVDLLAβ	970.56	50%	Acidic: 25%	M = 971.67
4	(Pep ₄)	970.30	3076	Basic: 25%	$(M+2H^+)/2 = 486.67$
5	ELLVDRR	ELLVDRR 899.52 42.86%		Acidic: 28.57%	M = 900.67
	(Pep ₅)	699.32	42.8070	Basic: 28.57%	$(M+2H^+)/2 = 451.00$
6	ELLVDRRAβ	970.56	50%	Acidic: 25% Basic: 25%	M = 971.58
$ $	(Pep ₆)	770.50			$(M+2H^+)/2 = 486.50$
7	ERRVDRR	985.55	14.29%	Acidic: 28.57%	M = 986.83
	(Pep ₇)	7 00 10 0	1	Basic: 57.14%	$(M+2H^+)/2 = 494.08$
8	ERRVDRRAβ	1056.59	25%	Acidic: 25%	M = 1057.83
	(Pep ₈)		-	Basic: 50%	$(M+2H^+)/2 = 529.58$
		D-Leu	cine replaced wit	th Lysine (K)	
9	EKKVDLL	843.51	42.86%	Acidic: 28.57%	M = 844.75
	(Pep ₉)			Basic: 28.57%	$(M+2H^+)/2 = 423.17$
10	EKKVDLLAβ	914.54	50%	Acidic: 25%	M = 915.83
	(Pep ₁₀)	, 1		Basic: 25%	$(M+2H^+)/2 = 458.67$
11	ELLVDKK	843.51	42.86%	Acidic: 28.57%	M = 844.58
	(Pep ₁₁)	0.0.01	.2.3070	Basic: 28.57%	$(M+2H^+)/2 = 423.00$
12	ELLVDKKAβ	914.54	50%	Acidic: 25% Basic: 25%	M = 915.83

	(Pep ₁₂)				$(M+2H^+)/2 = 458.75$
13	EKKVDKK	873.53	14.29%	Acidic: 28.57%	M = 874.75
	(Pep ₁₃)	673.33	14.2970	Basic: 57.14%	$(M+2H^+)/2 = 438.17$
14	EKKVDKKAβ	944.57	25%	Acidic: 25%	M = 945.75
14	(Pep ₁₄)	944.37	2370	Basic: 50%	$(M+2H^+)/2 = 473.58$

Table S2. Lag time, rate, and the ThT intensity maxima of all fourteen peptides at four different concentrations.

Name	HI:Pep=1:0.25		HI:Pep=1:0.5		HI:Pep=1:1			HI:Pep=1:2.5				
	t _{lag} (h)	Rate (h-1)	I_{max} $(AU\times10^3)$	t _{lag} (h)	Rate (h-1)	I_{max} (AU×10 ³)	t _{lag} (h)	Rate (h-1)	I_{max} (AU×10 ³)	t _{lag} (h)	Rate (h-1)	I_{max} $(AU\times10^3)$
Pep ₁	1.48 ± 0.12	3.91 ± 0.4	11.10 ± 0.20	1.10 ± 0.02	4.24 ± 0.4	8.78 ± 0.06	1.19 ± 0.08	5.45 ± 0.9	8.14 ± 0.07	1.15 ± 0.05	5.42 ± 0.3	6.43 ± 0.03
Pep ₂	2.63 ± 0.10	2.96 ± 0.1	16.49 ± 0.24	2.62 ± 0.15	2.84 ± 0.1	15.17 ± 0.76	2.30 ± 0.07	2 ± 0.9	9.38 ± 0.19	2.02 ± 0.18	1.47 ± 0.2	5 ± 0.36
Pep ₃	2.83 ± 0.02	3.25 ± 0.5	18.95 ± 0.43	2.65 ± 0.07	2.37 ± 0.1	18.51 ± 0.39	2.67 ± 0.02	2.37 ± 0.1	16.55 ± 0.28	3.17 ± 0.1	3.34 ± 0.6	16.44 ± 0.27
Pep ₄	2.82 ± 0.05	3.12 ± 0.1	18.3 ± 0.51	2.83 ± 0.06	3.08 ± 0.2	17.28 ± 0.20	2.54 ± 0.07	2.36 ± 0.2	16.24 ± 0.28	2.59 ± 0.04	2.49 ± 0.1	16.02 ± 0.22
Pep ₅	2.98 ± 0.10	3.08 ± 0.3	22.2 ± 0.55	2.67 ± 0.14	2.55 ± 0.2	20.77 ± 0.46	2.78 ± 0.01	2.63 ± 0.2	20.30 ± 0.44	2.78 ± 0.20	2.68 ± 0.7	18.10 ± 0.64
Pep ₆	2.91 ± 0.05	2.64 ± 0.2	25.12 ± 0.71	2.75 ± 0.11	2.29 ± 0.1	24.33 ± 0.31	2.79 ± 0.15	2.94 ± 0.2	24.12 ± 0.30	2.72 ± 0.22	3.23 ± 0.8	20.28 ± 1.43
Pep ₇	3.51 ± 0.05	3.01 ± 0.2	22.23 ± 0.37	3.69 ± 0.04	2.95 ± 0.1	22.28 ± 0.23	3.89 ± 0.05	2.87 ± 0.1	21.83 ± 0.58	4.42 ± 0.01	1.89 ± 0.1	13.22 ± 0.46
Pep ₈	3.35 ± 0.09	3.35 ± 0.3	22.11 ± 0.28	3.37 ± 0.08	3.1 ± 0.1	22.17 ± 0.56	3.30 ± 0.18	2.91 ± 0.3	19.86 ± 0.55	3.31 ± 0.06	2.43 ± 0.1	20.72 ± 0.09
Pep ₉	2.79 ± 0.04	3.04 ± 0.1	20.48 ± 0.22	2.91 ± 0.07	2.94 ± 0.5	19.3 ± 0.35	2.75 ± 0.13	2.94 ± 0.3	18.96 ± 0.22	2.9 ± 0.05	2.9 ± 0.2	18.26 ± 0.50
Pep ₁₀	2.85 ± 0.04	3.12 ± 0.1	20.33 ± 0.49	2.83 ± 0.03	2.91 ± 0.2	19.28 ± 0.27	2.65 ± 0.06	3.02 ± 0.5	18.99 ± 0.43	2.82 ± 0.01	2.59 ± 0.1	18.97 ± 0.10
Pep ₁₁	2.78 ± 0.12	2.95 ± 0.1	24.31 ± 0.16	2.78 ± 0.28	2.57 ± 0.6	23.59 ± 1.99	2.75 ± 0.25	2.41 ± 0.4	22.90 ± 0.30	2.73 ± 0.19	2.26 ± 0.4	21.43 ± 1.07
Pep ₁₂	2.97 ± 0.08	2.75 ± 0.1	24.57 ± 0.41	2.95 ± 0.16	2.17 ± 0.3	24.32 ± 0.29	3.03 ± 0.26	3.02 ± 0.6	24.20 ± 0.34	2.69 ± 0.12	2.56 ± 0.1	23.43 ± 0.14
Pep ₁₃	3.56 ± 0.02	3.10 ± 0.1	22.48 ± 0.45	3.59 ± 0.01	2.92 ± 0.1	20.56 ± 0.57	3.69 ± 0.06	2.78 ± 0.1	20.84 ± 0.43	4 ± 0.03	1.92 ± 0.1	12.73 ± 0.18
Pep ₁₄	3.54 ± 0.06	3.13 ± 0.2	21.61 ± 0.41	3.55 ± 0.05	3.06 ± 0.2	21.27 ± 0.52	3.48 ± 0.06	2.57 ± 0.3	20.81 ± 0.85	3.54 ± 0.2	2.55 ± 0.4	21.19 ± 0.54

Table S3. ThT I_{max} , lag time, and rate of aggregation of HI containing different molar ratios of Pep₇ and Pep₁₃.

Sample	Relative inhibition in ThT _{max} with no peptide control (%)	HI fibrillation lag time (h)	Relative increase in lag time with no peptide control (%)	Rate of fibrillation (h ⁻¹)	Relative decrease in rate with no peptide control (%)
HI:Pep=1:0	NA	2.81 ± 0.02	NA	5.79 ± 0.1	NA
HI:Pep ₇ =1:0.25	26.67	3.51 ± 0.05	25.06	3.01 ± 0.22	48.02
HI:Pep ₇ =1:0.5	26.49	3.69 ± 0.04	31.34	2.95 ± 0.12	48.89
HI:Pep ₇ =1:1	28	3.89 ± 0.05	38.63	2.87 ± 0.15	50.38
HI:Pep ₇ =1:2.5	56.39	4.42 ± 0.01	57.59	1.89 ± 0.12	67.33
HI:Pep ₇ =1:5	64.86	4.92 ± 0.07	75.17	1.90 ± 0.11	67.11
HI:Pep ₁₃ =1:0.25	25.85	3.56 ± 0.02	26.87	3.1 ± 0.11	46.41
HI:Pep ₁₃ =1:0.5	32.18	3.59 ± 0.01	27.79	2.92 ± 0.04	49.41
HI:Pep ₁₃ =1:1	31.26	3.69 ± 0.06	31.64	2.75 ± 0.1	52.43
HI:Pep ₁₃ =1:2.5	58.01	4 ± 0.03	42.61	1.92 ± 0.06	66.69
HI:Pep ₁₃ =1:5	68.04	4.08 ± 0.03	45.50	2.02 ± 0.1	65.01

Table S4. Residue-specific binding interaction between Pep_7 and Pep_{13} and HI.

		Interacting Residues				
	Binding energy (kJ mol ⁻¹)	H-bonds	Electrostatic interactions			
Pep ₇	-23.94	Cluster 1: Gly ^{A1} , Ile ^{A2} , Val ^{A3} , Gln ^{A5} Cluster 2: Asn ^{A18} , Tyr ^{A19} , Cys ^{A20} , Asn ^{A21} Cluster 3: Thr ^{B27} , Pro ^{B28} , Lys ^{B29}	Gly ^{A1} , Tyr ^{A19}			
Pep ₁₃	-16.75	Cluster 1: Gly ^{A1} , Ile ^{A2} , Glu ^{A4} Cluster 2: Tyr ^{A19} , Cys ^{A20} , Asn ^{A21} Cluster 3: Phe ^{B25} , Tyr ^{B26} , Thr ^{B27} , Lys ^{B29}	Gly ^{A1} , Glu ^{A4} , Tyr ^{B26}			

Table S5. Binding energy components of peptides with HI obtained from gmx_mmpbsa of the MD simulation.

	ΔG _{gas} (kJ mol ⁻¹)		ΔG _{solv} (k	$\Delta G_{ ext{total}}$	
Sample	ΔE _{vDW} (kJ mol ⁻¹)	ΔE _{Elec} (kJ mol ⁻¹)	ΔE _{polar} (kJ mol ⁻¹)	ΔE _{non-polar} (kJ mol ⁻¹)	(kJ mol ⁻¹)
Pep ₇ (ERRVDRR)	-74.81	-1355.36	1338.46	-16.48	-108.20
Pep ₁₃ (EKKVDKK)	-63.64	-1078.22	1097.97	-11.67	-55.61

Table S6. Quantitative morphometric analysis of HepG2 cells treated with native HI, HI+Pep₇, HI+Pep₁₃, and aggregated HI, using ImageJ. Data represent mean \pm SD for cell area and nuclear area.

Sample	Cell area (μm²)	Nuclear area (μm²)		
Native HI	1665.2 ± 301.8	362.1 ± 52.3		
Aggregated HI	379.43 ± 28.54	86 ± 12.8		
HI+Pep ₇	1904 ± 278.3	400.8 ± 32.2		
HI+Pep ₁₃	1521.7 ± 156.4	391.4 ± 77.5		