Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Designing highly tunable laminin inspired bioactive peptide hydrogel based biomaterials for directing cellular response

Ranit Bhandary ^a, Sourav Sen ^a, Sweta Mohanty ^a and Sangita Roy ^a *

^a Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali

140306, Punjab, India

*Email: sangita@inst.ac.in

Table of contents

Table S1: LC-MS analysis data of the peptide from Chemdraw (Ultra 12.0) and ESI-MS.

Table S2: Gelation behavior of the laminin-inspired peptide by co-solvent approach using 5% DMSO with different peptide concentration.

Table S3: LC-MS analysis data of the scrambled peptide from Chemdraw (Ultra 12.0) and ESI-MS.

Table S4: Gelation behavior of the scrambled peptide sequence by co-solvent approach using 5% DMSO with different peptide concentration.

Table S5: Table of fiber diameter of the peptide hydrogels prepared at different concentrations.

Table S6: Water contact angle (WCA) values at different time points for the peptide hydrogels of different concentrations.

Table S7: The values of cell shape index (CSI) and area covered by fibroblast cells on control as well as peptide hydrogel scaffold as determined by F-actin staining.

Table S8: The values of cell shape index (CSI) and area covered by neuronal cells on control as well as peptide hydrogel scaffold as determined by β -tubulin staining.

Figure S1: Reverse phase HPLC chromatogram of Nap-IVVSIVNGR.

Figure S2: LC-MS spectra of laminin inspired peptide sequence analyzed using ESI-MS technique.

Figure S3: FTIR spectra of 25 mM Nap-IVVSIVNGR hydrogels (prepared in 5% DMSO/water) after solvent exchange showing diminished sulfoxide peak at 1020 cm⁻¹.

Figure S4: LC-MS spectra of scrambled peptide analyzed using ESI-MS technique.

Figure S5: Reverse phase HPLC chromatogram of scrambled peptide sequence Nap-SVGRINVIV.

- Figure S6: CD spectra of scrambled peptide hydrogel at different concentrations.
- **Figure S7:** Comparison of the CD spectra of a) Nap-IVVSIVNGR and b) Nap-SVGRINVIV (scrambled peptide) at different concentration.
- **Figure S8:** FTIR spectra of Nap-IVVSIVNGR peptide monomer powder along with freeze dried peptide hydrogels prepared at different concentrations.
- **Figure S9:** Secondary structure evaluation of the scrambled hydrogels at different peptide concentrations by various spectroscopic techniques: (a) FTIR- spectroscopic measurement, (b) ThT binding assay.
- **Figure S10:** Representative fluorescence emission spectra of peptide amphiphile in sol and gel states, indicating self-assembly by the quenched monomeric emission of the naphthoxy group in the gel state.
- **Figure S11:** a) Tht binding assay and b) Congo red binding study of the peptide hydrogels at different concentrations.
- **Figure S12:** Fluorescence microscopic images of the ThT bound peptide hydrogels at different concentrations (a) ThT Control, (b) 20 mM, (c) 25 mM, and (d) 30 mM.
- **Figure S13:** FESEM images of the peptide hydrogels at different peptide concentrations (a) 20 mM, (b) 25 mM, and (c) 30 mM Nap-IVVSIVNGR.
- **Figure S14:** Morphological analysis of Nap-SVGRINVIV scrambled peptide hydrogels at different concentrations. TEM images of the gels prepared at: (a) 20 mM, (b) 25 mM, and (c) 30 mM of peptide concentration. Scale bar is 200 nm.
- **Figure S15:** Morphological analysis of Nap-SVGRINVIV scrambled peptide hydrogels at different concentrations. FESEM images of the gels prepared at: (a) 20 mM, (b) 25 mM, and (c) 30 mM of peptide concentration. Scale bar is 100 nm.
- **Figure S16:** Strain sweep analysis of laminin-inspired peptide hydrogels at different concentrations (a) 20 mM, (b) 25 mM, and (c) 30 mM.
- **Figure S17:** Mechanical strength analysis of the scrambled hydrogels at different concentration using a frequency sweep experiment.
- **Figure S18:** (a) Time-dependent variation in the water contact angle of Nap-IVVSIVNGR hydrogels. Images of the water droplets after landing on surfaces of 20 mM hydrogel at (b) 5 s, (c) 50s, 25 mM hydrogel at (d) 5 s, (e) 50 s, 30 mM hydrogel at (f) 5 s, (g) 50 s.
- Figure S19: Determination of cellular viability of the scrambled peptide and comparison of cellular viability with the laminin inspired peptide Nap-IVVSIVNGR: Cellular viability of

hydrogel on (a) L929 cells, (b) SH-SY5Y cells, and (c) Bright field images of both the cells in control and after 24h following treatment with peptide at 0.88 mM concentration.

Figure S20: Cellular growth and proliferation study of the peptide at subgelation concentration on (a) L929 cells, (b) SH-SY5Y cells.

Figure S21: Cellular growth and proliferation study of the scrambled peptide hydrogels on (a) L929 cells, (b) SH-SY5Y cells.

Figure S22: 3D stability study of the hydrogels in PBS having different peptide concentrations at different time points.

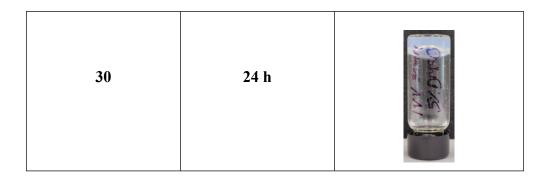

Figure S23: Confocal laser scanning microscopy images of SH-SY5Y cells in 3D cell culture conditions on (a) Control, (b) 20 mM Nap-IVVSIVNGR hydrogel, (c) 25 mM Nap-IVVSIVNGR hydrogel, (d) 30 mM Nap-IVVSIVNGR hydrogel. Scale bar is 200 μm, Z-stack rendering images of the L929 cells after live/dead staining in the 3-D cell culture conditions in case of (e) Control, (f) 20 mM Nap-IVVSIVNGR hydrogel, (g) 25 mM Nap-IVVSIVNGR hydrogel, (h) 30 mM Nap-IVVSIVNGR hydrogel. The scale bar is 200 μm.

Table S1: LC-MS analysis data of the peptide from Chemdraw (Ultra 12.0) and ESI-MS.

Peptide Nap-IVVSIVNGR	Calculated molecular weight (Chem Draw Ultra 12.0)	Found m/z value (M+H) ⁺¹ (ESI -MS)
$C_{54}H_{86}N_{14}O_{13}$	1139.37	1140.65

Table S2: Gelation behavior of the laminin-inspired peptide by co-solvent approach using 5% DMSO with different peptide concentration.

Concentration of laminin-inspired peptide (mM)	Gelation time	Optical images of the gels formed at different concentrations.
2	No Gelation	or o
5	No Gelation	
10	No Gelation	
20	72 h	10 19 10 00
25	48 h	

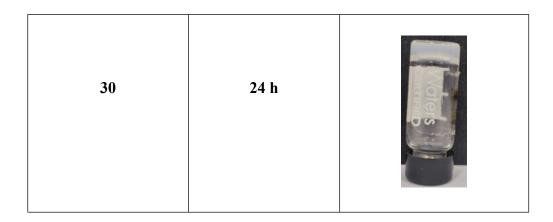


Table S3: LC-MS analysis data of the scrambled peptide from Chemdraw (Ultra 12.0) and ESI-MS.

Peptide Nap- SVGRINVIV	Calculated molecular weight (Chem Draw Ultra 12.0)	Found m/z value (ESI -MS)	Found m/z value (M+H) ⁺¹ (ESI -MS)	Found m/z value (M+2H) ⁺² (ESI -MS)
$C_{54}H_{86}N_{14}O_{13}$	1139.37	1137.65	1138.65	1139.66

Table S4: Gelation behavior of the scrambled peptide sequence by co-solvent approach using 5% DMSO with different peptide concentration.

Concentration of scrambled peptide (mM)	Gelation time	Optical images of the gels formed at different concentrations.
20	72 h	
25	48 h	

Table S5: Table displaying fiber diameter of the nanofibrous network of the peptide hydrogels prepared at different concentrations as revealed from TEM images.

Concentration of Nap-IVVSIVNGR peptide (mM)	Fiber Diameter (nm)
20	10.46 ± 1.72
25	9.85 ± 1.15
30	8.16 ± 0.82

Table S6: Water contact angle (WCA) values at different time points for the peptide hydrogels of different concentrations.

Time Points	Water contact angle at different peptide concentration (°)		
(Sec)	20 mM	25 mM	30 mM
5	32.29	34.57	30.91
10	31.26	30.40	26.05
20	29.64	27.08	24.64
30	29.75	25.62	24.15
40	29.74	23.81	23.38
50	28.30	23.48	22.85

Table S7: The values of cell shape index (CSI) and area covered by fibroblast cells on control as well as peptide hydrogel scaffold as determined by F-actin staining.

Peptide Concentration (mM)	CSI Values	Area Covered (μm²)
Control	0.61 ± 0.05	309.58 ± 38.73
20	0.75 ± 0.07	273.60 ± 33.82
25	0.45 ± 0.03	312.35 ± 31.50
30	0.54 ± 0.05	389.13 ± 34.63

Table S8: The values of cell shape index (CSI) and area covered by neuronal cells on control as well as peptide hydrogel scaffold as determined by β -tubulin staining.

Peptide Concentration (mM)	CSI Values	Area Covered (μm²)
Control	0.79 ± 0.05	267.93 ± 33.40
20	0.90 ± 0.03	194.39 ± 36.04
25	0.87 ± 0.05	292.93 ± 26.50
30	0.82 ± 0.02	349.69 ± 27.24

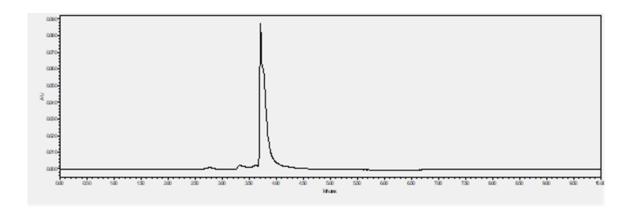
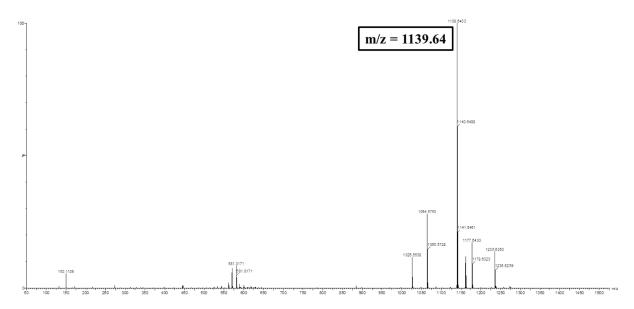
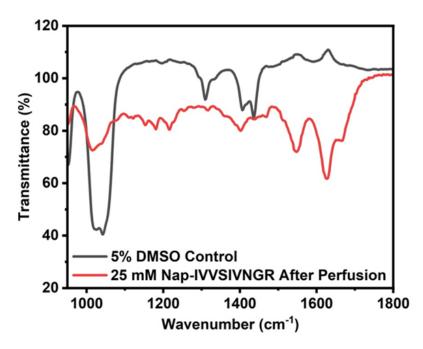




Figure S1: Reverse phase HPLC chromatogram of Nap-IVVSIVNGR.

Figure S2: LC-MS spectra of laminin inspired peptide sequence analyzed using ESI-MS technique.

Figure S3: FTIR spectra of 25 mM Nap-IVVSIVNGR hydrogels (prepared in 5% DMSO/water) after solvent exchange showing diminished sulfoxide peak at 1020 cm⁻¹.

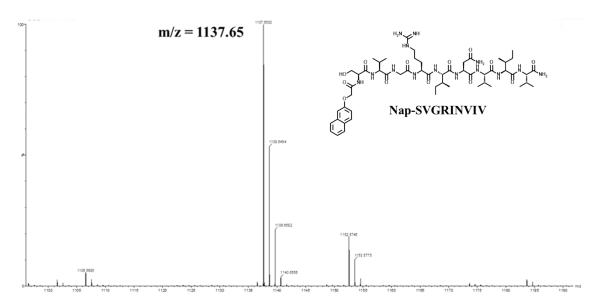
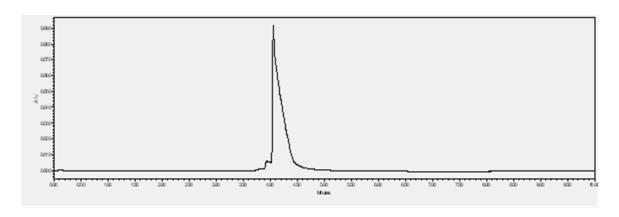
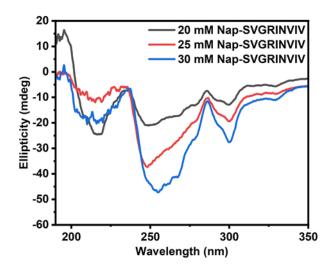
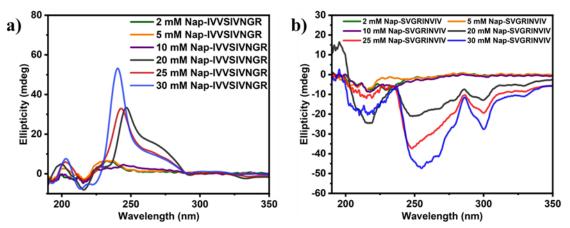
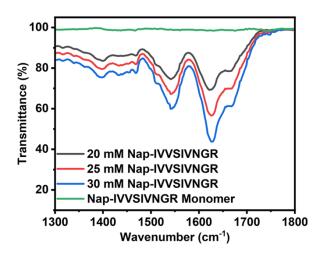
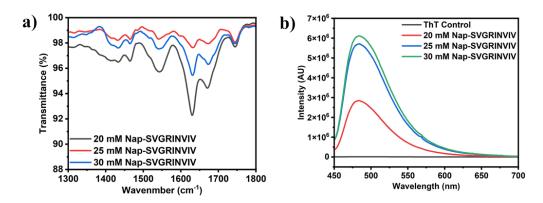
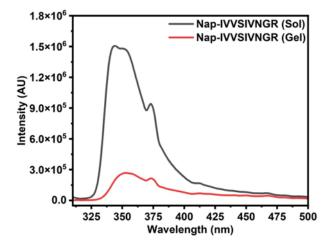



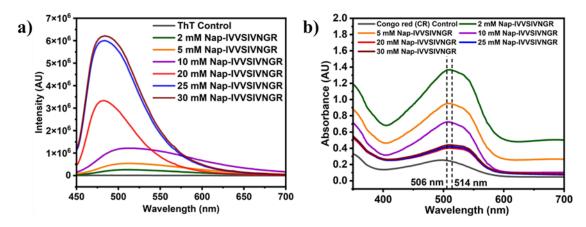
Figure S4: LC-MS spectra of scrambled peptide analyzed using ESI-MS technique.

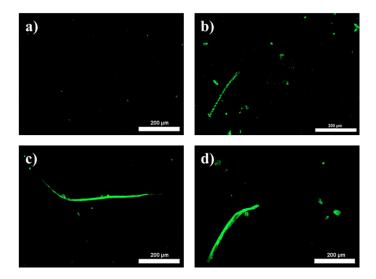
Figure S5: Reverse phase HPLC chromatogram of scrambled peptide sequence Nap-SVGRINVIV.

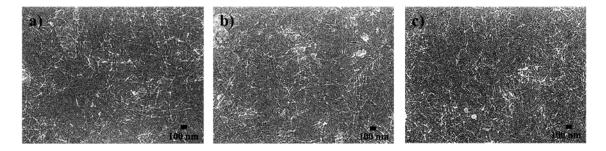




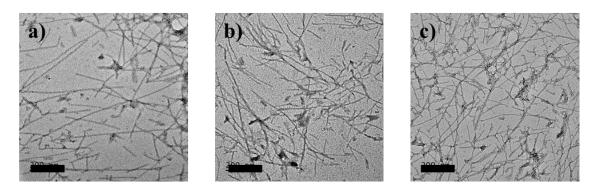

Figure S6: CD spectra of scrambled peptide hydrogel at different concentrations.

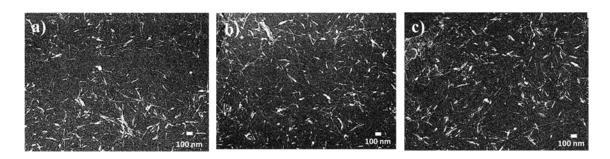

Figure S7: Comparison of the CD spectra of a) Nap-IVVSIVNGR and b) Nap-SVGRINVIV (scrambled peptide) at different concentration.

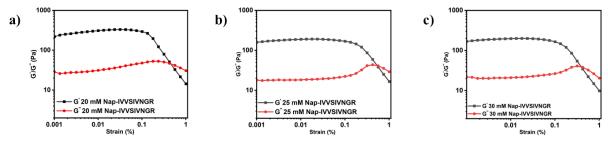

Figure S8: FTIR spectra of Nap-IVVSIVNGR peptide monomer powder along with freeze dried peptide hydrogels prepared at different concentrations.

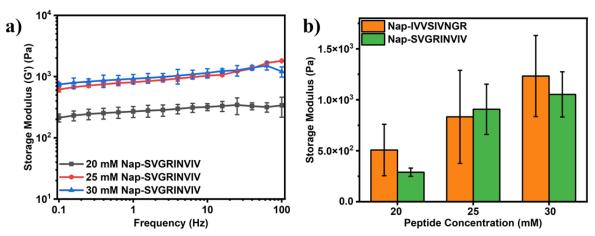

Figure S9: Secondary structure evaluation of the scrambled hydrogels at different peptide concentrations by various spectroscopic techniques: (a) FTIR- spectroscopic measurement, (b) ThT binding assay.

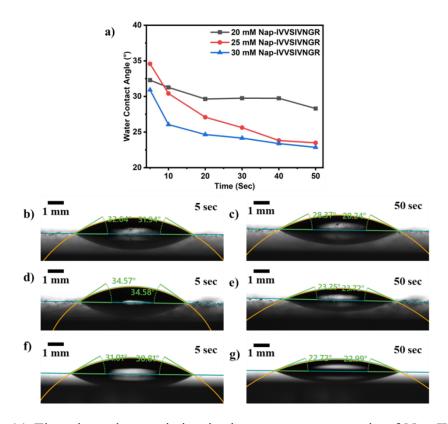

Figure S10: Representative fluorescence emission spectra of peptide amphiphile in sol and gel states, indicating self-assembly by the quenched monomeric emission of the naphthoxy group in the gel state.

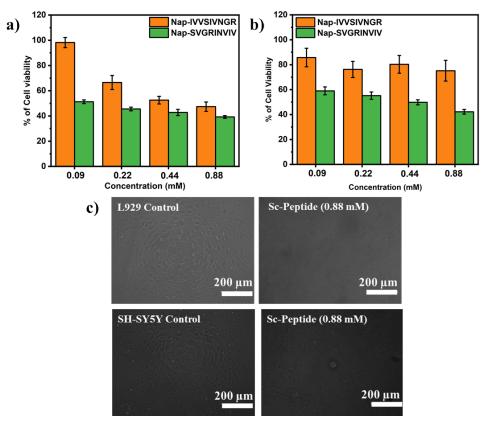

Figure S11: a) Tht binding assay and b) Congo red binding study of the peptide hydrogels at different concentrations.

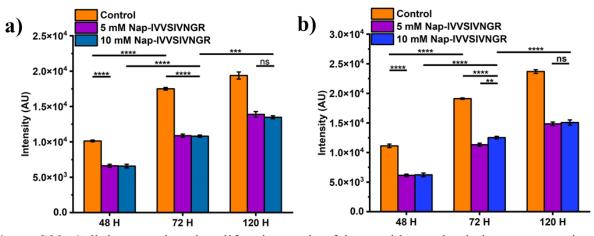

Figure S12: Fluorescence microscopic images of the ThT bound peptide hydrogels at different concentrations (a) ThT Control, (b) 20 mM, (c) 25 mM, and (d) 30 mM.

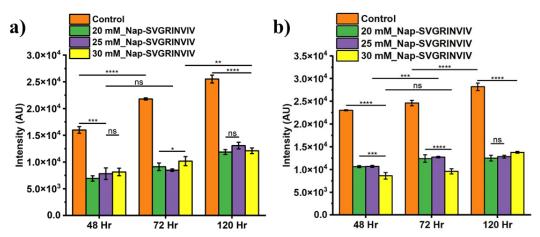

Figure S13: FESEM images of the peptide hydrogels at different peptide concentrations (a) 20 mM, (b) 25 mM, and (c) 30 mM Nap-IVVSIVNGR.

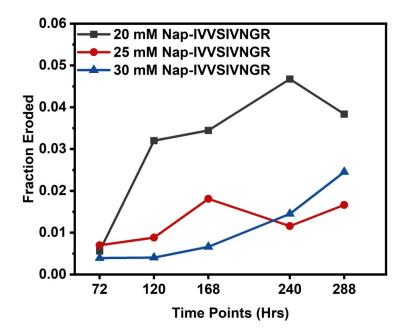

Figure S14: Morphological analysis of Nap-SVGRINVIV scrambled peptide hydrogels at different concentrations. TEM images of the gels prepared at: (a) 20 mM, (b) 25 mM, and (c) 30 mM of peptide concentration. Scale bar is 200 nm.


Figure S15: Morphological analysis of Nap-SVGRINVIV scrambled peptide hydrogels at different concentrations. FESEM images of the gels prepared at: (a) 20 mM, (b) 25 mM, and (c) 30 mM of peptide concentration. Scale bar is 100 nm.


Figure S16: Strain sweep analysis of laminin-inspired peptide hydrogels at different concentrations (a) 20 mM, (b) 25 mM, and (c) 30 mM.


Figure S17: Mechanical strength analysis of the scrambled hydrogels at different concentration using a frequency sweep experiment.


Figure S18: (a) Time-dependent variation in the water contact angle of Nap-IVVSIVNGR hydrogels. Images of the water droplets after landing on surfaces of 20 mM hydrogel at (b) 5 s, (c) 50s, 25 mM hydrogel at (d) 5 s, (e) 50 s, 30 mM hydrogel at (f) 5 s, (g) 50 s.


Figure S19: Determination of cellular viability of the scrambled peptide and comparison of cellular viability with the laminin inspired peptide Nap-IVVSIVNGR: Cellular viability of hydrogel on (a) L929 cells, (b) SH-SY5Y cells, and (c) Bright field images of both the cells in control and after 24h following treatment with peptide at 0.88 mM concentration.

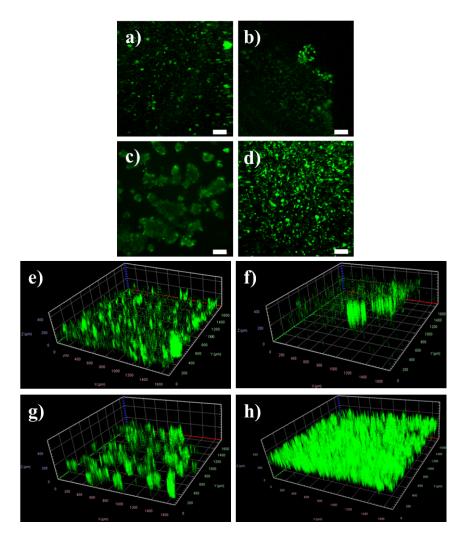

Figure S20: Cellular growth and proliferation study of the peptide at subgelation concentration on (a) L929 cells, (b) SH-SY5Y cells.

Figure S21: Cellular growth and proliferation study of the scrambled peptide hydrogels on (a) L929 cells, (b) SH-SY5Y cells.

Figure S22: 3D stability study of the hydrogels in PBS having different peptide concentrations at different time points.

Figure S23: Confocal laser scanning microscopy images of SH-SY5Y cells in 3D cell culture conditions on (a) Control, (b) 20 mM Nap-IVVSIVNGR hydrogel, (c) 25 mM Nap-IVVSIVNGR hydrogel, (d) 30 mM Nap-IVVSIVNGR hydrogel. Scale bar is 200 μ m, Z-stack rendering images of the L929 cells after live/dead staining in the 3-D cell culture conditions in case of (e) Control, (f) 20 mM Nap-IVVSIVNGR hydrogel, (g) 25 mM Nap-IVVSIVNGR hydrogel, (h) 30 mM Nap-IVVSIVNGR hydrogel. The scale bar is 200 μ m.