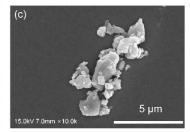
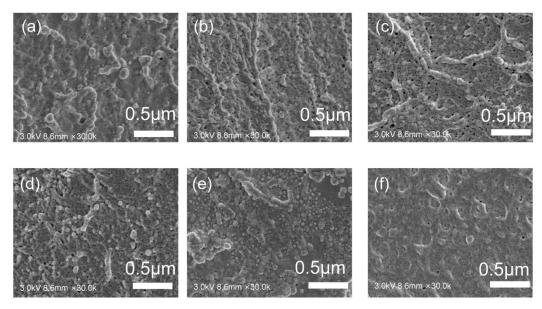
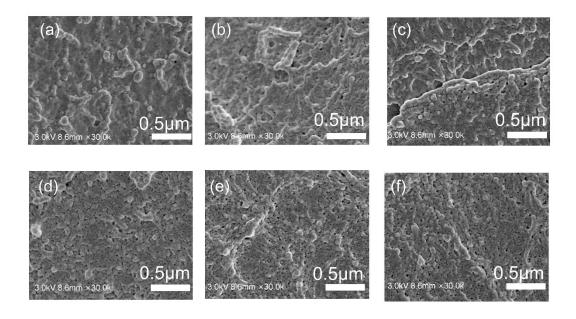
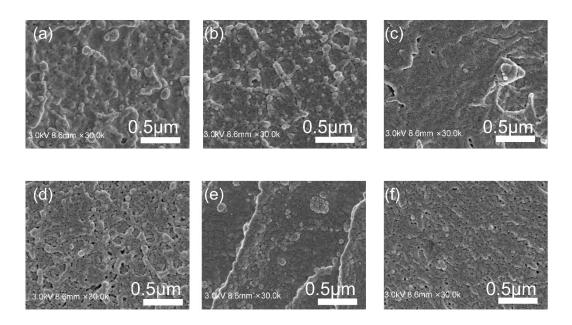

Supporting Information for:

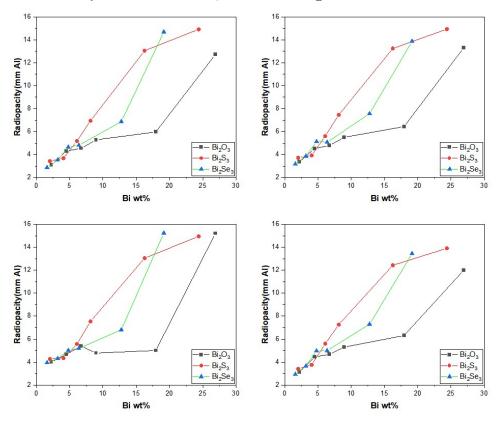

Bismuth Chalcogenides: Multifunctional Enhancement of Radiopacity, Mechanical Resilience, and Osteogenesis in PMMA Bone Cements for Vertebroplasty

Tong-Guang Xu^{#1,2}, Lin-Xuan Gao^{#3}, Liu Yong¹, Deng Chen⁴, Feng Zhang⁵,* and Jing-Hui He^{3*}, Bin Meng^{2*}


- 1. Department of Orthopedics, The People's Hospital of Suzhou New District, Suzhou, Jiangsu 215129, China.
- 2. Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
- 3. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
- 4. Department of Joint Orthopedics, Jingmen Certral Hospital, Affiliated to Jingchu University of Technology, Jingmen 448000, China.
- 5. Analysis and Testing Center, Soochow University, Suzhou, Jiangsu 215123, China.
- **Corresponding author: E-mail addresses: ylfengzhang@suda.edu.cn (F. Zhang); jinghhe@suda.edu.cn (J.H. He); mbyang2000@126.com (B. Meng)




Figure S1. SEM images of purchased Bi₂X₃ particles: (a) Bi₂O₃, (b) Bi₂S₃, (c) Bi₂Se₃.


Figure S2. SEM images of Bi₂O₃-PMMA bone cement with various Bi₂O₃ content of: (a) 0%, (b) 2.5%, (c) 5%, (d) 7.5%, (e) 20%, (f) 30%. The sample with 0% Bi₂O₃ refers to the pure PMMA bone cement without Bi₂O₃. The SEM image of the sample with 10% Bi₂O₃ is shown in Figure 1 in the main text.

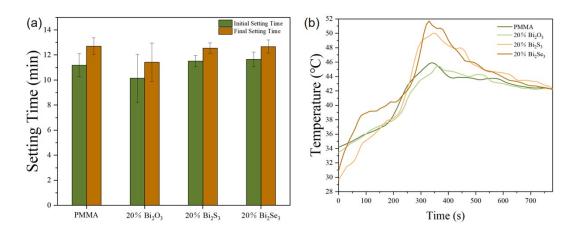

Figure S3. SEM images of Bi₂S₃-PMMA bone cement with various Bi₂S₃ content of: (a) 0%, (b) 2.5%, (c) 5%, (d) 7.5%, (e) 20%, (f) 30%. The sample with 0% Bi₂S₃ refers to the pure PMMA bone cement without Bi₂S₃. The SEM image of the sample with 10% Bi₂S₃ is shown in Figure 1 in the main text.

Figure S4. SEM images of Bi₂Se₃-PMMA bone cement with various Bi₂Se₃ content of: (a) 0%, (b) 2.5%, (c) 5%, (d) 7.5%, (e) 20%, (f) 30%. The sample with 0% Bi₂Se₃ refers to the pure PMMA bone cement without Bi₂Se₃. The SEM image of the sample with 10% Bi₂Se₃ is shown in Figure 1 in the main text.

Figure S5. Radiopacity of Bi₂X₃-PMMA bone cements with varying Bi contents at different tube voltages: (a) 80.9 kV, (b) 80.9 kV, (c) 101.9 kV, (d) 120.9 kV. Radiopacity values were determined from Figure 5. The Bi element content is calculated from its Bi₂X₃ weigh ratio in each Bi₂X₃-PMMA sample.

Figure S6. Curing properties of commercial PMMA and 20% Bi₂X₃ (X=O, S, Se)-PMMA bone cements. (a) Initial and final setting times; (b) Curing temperature changes at 37°C constant temperature. Error bars represent standard deviations (n=3).