Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Contraction-Actuated Thermo-Responsive Hydrogels Accelerate Wound Healing

via Mechanosensitive Proliferation

Yangyang Liu^a, Huibo Wang^a, Changliang Wu^a, Xingang Peng^a, Junhao Zhang^a, Shulin

Liang^a, Ze Li^{a,b*}, Xiuwen Wu ^{b*}, Jianan Ren^{b*}, Peige Wang^{a*}

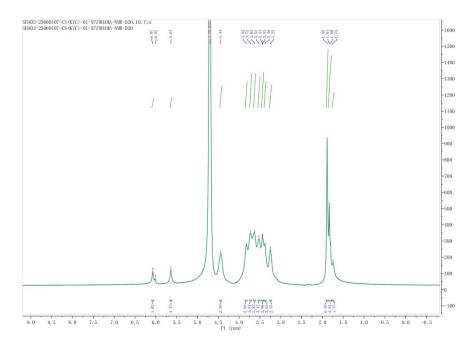
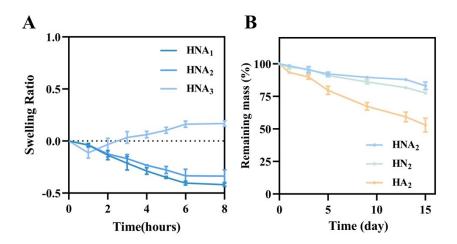
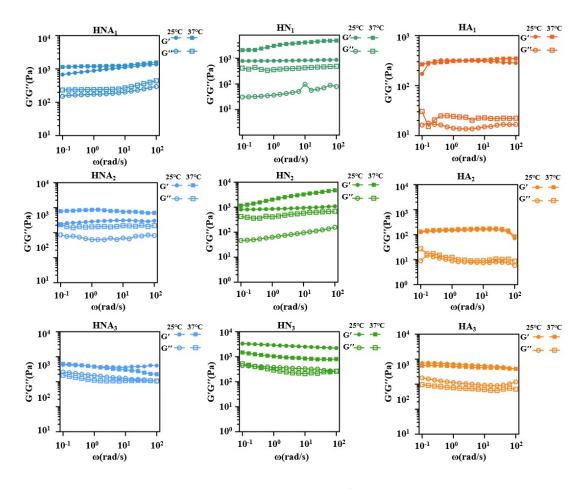
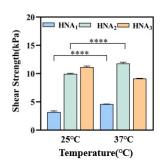
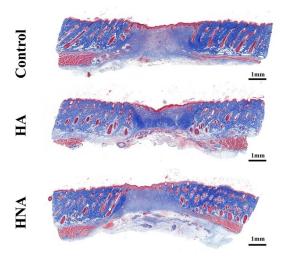



Figure S1. Characteristics of HAMA. NMR spectra of HAMA.

Table S1 The concentration of each component in the HNA hydrogel

	HNA_1	HNA ₂	HNA ₃	
HAMA	1%	2%	3%	
NIPAM	20%	25%	30%	
AA	6%	8%	10%	

Figure S2. Material properties of HNA hydrogels. A) Swelling properties of HNA₁, HNA₂, and HNA₃ hydrogels (n=3). B) Degradation rates of HNA, HN, and HA hydrogels in PBS at 37°C (n=3).

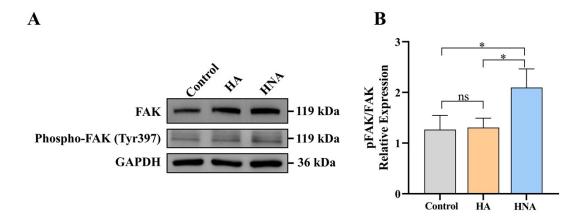

Figure S3. Material properties of HNA hydrogels. Rheological behavior of each component of the hydrogel.

Figure S4. Material properties of HNA hydrogels. Adhesive properties of each component hydrogel. ****p < 0.0001.

Figure S5. Histological evaluation of the wound at day 9. Masson's stain (n = 5).

Figure S6. A \cdot B) Western blots and quantitative analysis of wounds in the control, HA and HNA groups after 9 days of treatment (n = 5). *p < 0.05, **p < 0.01.