

Ruiqi Liu<sup>b,1</sup>, Shan Yang<sup>a,1</sup>, Tianyue Wu<sup>d</sup>, Qiao Jin<sup>c,\*</sup>, Chenggong Hu<sup>a,\*</sup>

6 <sup>a</sup>Department of Critical Care Medicine, West China Hospital, Sichuan University,  
7 Chengdu, Sichuan, 610041, China.

<sup>8</sup> <sup>b</sup>Department of Burn and Plastic Surgery, West China Hospital, Sichuan University,  
<sup>9</sup> Chengdu, Sichuan, 610041, China.

10 <sup>c</sup>MOE Key Laboratory of Macromolecular Synthesis and Functionalization,  
11 Department of Polymer Science and Engineering, Zhejiang University, Hangzhou  
12 310058, China.

13 <sup>d</sup>West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041,  
14 China.

<sup>15</sup> <sup>1</sup> These authors contributed equally to this paper.

16 \*Corresponding Author E-mail: jinqiao@zju.edu.cn (Qiao Jin);  
17 huchenggong@scu.edu.cn (Chenggong Hu)

18

19

20 **Materials and methods**

21 **Materials**

22 Chitosan (CS,  $M_w$  = 200 kDa, deacetylation degree > 90%), lipoic acid (LA), and  
23 glycidyltrimethylammonium chloride (GTMAC) were purchased from Adamas  
24 Reagent, Ltd., China. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH), and 2, 2-azino-bis (3-  
25 ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) were purchased from  
26 Macklin Biochemical Co., Ltd. (Shanghai, China).

27

28 **Characterization**

29 The ultraviolet-visible (UV-vis) spectra was obtained with an Agilent Gary 60  
30 G6860A. The chemical structure of the LQCS was confirmed by nuclear magnetic  
31 resonance ( $^1\text{H}$  NMR, AV III HD 400 MHz, Bruker), and  $\text{D}_2\text{O}$  was used as deuterated  
32 solvents. The infrared spectra of LQCS were analyzed by flourier transform infrared  
33 (FTIR) spectroscopy (Bruker, Germany). The rheological properties of the hydrogel  
34 were determined using a rheometer (Anton Paar, MCR 302) equipped with a 20 mm  
35 diameter parallel plate and a 1 mm gap between the parallel plate and the measuring  
36 platform. Subsequently, the hydrogels underwent a series of rheological tests. First,  
37 scanning tests were used to analyze the modulus (storage modulus,  $G'$  and loss modulus,  
38  $G''$ ) versus frequency (0.01 ~ 100 Hz). The linear viscoelastic region of the hydrogel  
39 was investigated, and a strain scan test was performed at a constant frequency (1 Hz)  
40 with an oscillatory strain from 0.1% to 1000%.

41

42 **ABTS and DPPH scavenging ability**

43 The antioxidant capacity of hydrogels was evaluated using DPPH and ABTS free  
44 radicals. For DPPH scavenging assay, fresh DPPH/ethanol solution (0.1 mM) was  
45 prepared.<sup>32, 33</sup> Then the samples were submerged in the DPPH solution and left in the  
46 dark at 37°C for 30 min. Finally, the absorbance of each sample at 517 nm was  
47 recorded. Radical scavenging activity was calculated as the following formula:

48

$$Scavenging\ activity\ (\%) = \frac{A_0 - A_1}{A_0} \times 100\%$$

49 where  $A_1$  is the absorbance of the experimental group and  $A_0$  is the absorbance of DPPH  
50 solution.

51 For ABTS scavenging assay, the ABTS<sup>+</sup> solution was first obtained by reacting 7 mM  
52 ABTS<sup>+</sup> stock solution (10 mL) with 2.45 mM potassium persulfate solution (10 mL)  
53 overnight in the dark. The ABTS<sup>+</sup> solution was diluted 100 times and used for  
54 subsequent measurements. Scavenging activity was assessed by measuring the change  
55 in absorbance at 734 nm after mixing the sample with ABTS<sup>+</sup> for 30 min. The next  
56 steps are the same as for the DPPH scavenging assay. All tests were performed three  
57 times. The free radical scavenging activity was calculated similarly to the DPPH assay.

58

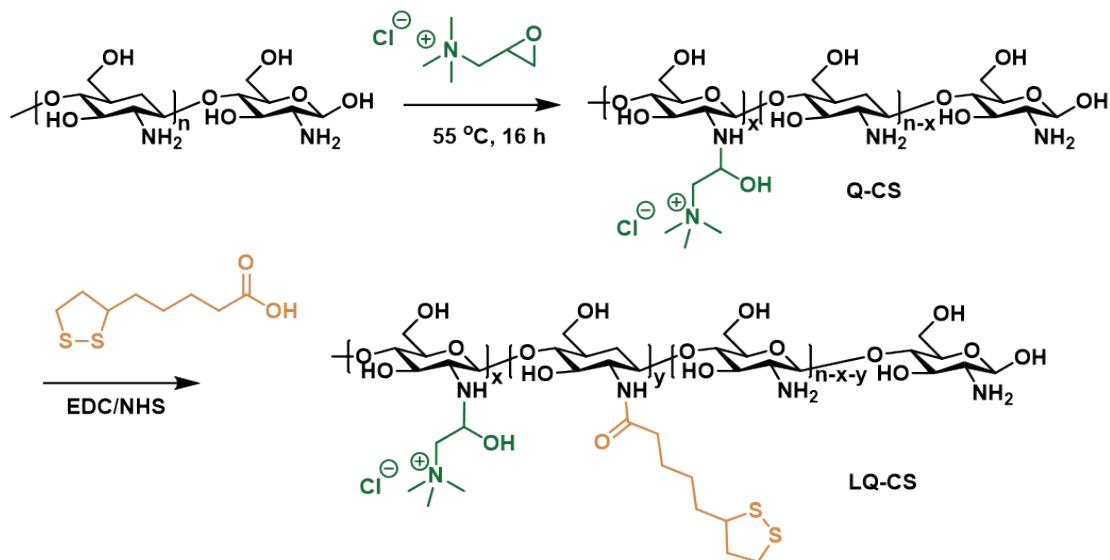
59 **Adhesion Tests**

60 The adhesion strength of the hydrogel to the skin was investigated by a modified  
61 lap-shear test. Tissue adhesion of the hydrogel was determined using fresh pig skin and  
62 gelatin-coated slides. Briefly, pig skin was cut into rectangular sample strips of 20 mm  
63  $\times$  50 mm. The gelatin-coated slides were finally obtained by dropping a 20% (w/v)  
64 gelatin solution on the slide surface at 37°C and then dried overnight at room  
65 temperature. Next, 100  $\mu$ L of hydrogel precursor solution was placed between the pig  
66 skin and gelatin-coated slides, followed by UV cross-linking, where the overlap area  
67 was 15 mm  $\times$  20 mm. The shear strength of the specimens was tested using a servo  
68 control system general purpose testing machine (AI-7000S), with a tensile rate of (5  
69 mm/min), and the shear strength of the bioadhesive was determined at the separation  
70 point (n = 3).

71

72 **In vitro Antibacterial Activity Test**

73 For antimicrobial activity testing, slightly modified from previous literature, *E. coli*  
74 and *S. aureus* were selected as representative Gram-negative and Gram-positive  
75 bacteria, respectively. The antimicrobial properties of the hydrogels were evaluated  
76 using the plate counting method. In particular, 200  $\mu$ L of LQCS-3 hydrogels were  
77 prepared in 48-well plates (PBS was used as a control), and then 100  $\mu$ L of bacterial


78 solution (PBS,  $1 \times 10^6$  CFU/mL) was added to each well. The treated bacterial  
79 suspension was diluted 100-fold and 100  $\mu$ L was taken and spread evenly on a Luria-  
80 Bertani agar medium, incubated at 37°C for 16 h and then photographed and counted,  
81 with three parallel replicates in each group).

82

### 83 Cytotoxicity Evaluation

84 The L929 cells were incubated with the hydrogel solution at 37 °C and 5% CO<sub>2</sub> for 24 h. A  
85 96-well plate was prepared with 100  $\mu$ L of L929 cell suspension ( $5 \times 10^4$  cells/mL) per well, and  
86 the cells were cultured for 3 days. The CCK-8 reagent (KG087, KeyGEN BioTECH, Nanjing,  
87 China) was added to the cells for 1 hour, and the optical density was measured at a wavelength of  
88 450 nm using a microplate reader. Additionally, a cell live and death assay was performed using a  
89 buffer containing Calcein AM and propidium iodide (PI). After incubation with the buffer for 30  
90 min, the fluorescence images were taken using fluorescence microscopy (Leica Dmi8, Germany)  
91 with excitation wavelengths of 488 nm and 543 nm. In the flow cytometry experiment, we gathered  
92 the cells and centrifuged the cell suspension sample for 5 min. Afterward, we removed the liquid  
93 above the cell pellet, rinsed the cells two times with PBS, and repeated the centrifugation step to  
94 obtain concentrated cell sedimentation. To prepare the cells for analysis, we resuspended them in  
95 500  $\mu$ L of binding buffer. We added 5  $\mu$ L of Annexin V. Following that, we included 5  $\mu$ L of PI  
96 and gently mixed the solution (KGA1030, KeyGEN BioTECH, Nanjing, China). The mixture was  
97 then incubated at room temperature, shielded from light, for 10 min. Finally, we evaluated and  
98 analyzed the samples using Cytoflex and CytExpert software (version 4.0, Beckman Coulter, Inc).  
99

100



101

102

**Figure S1.** Synthesis route of the LQ-CS.

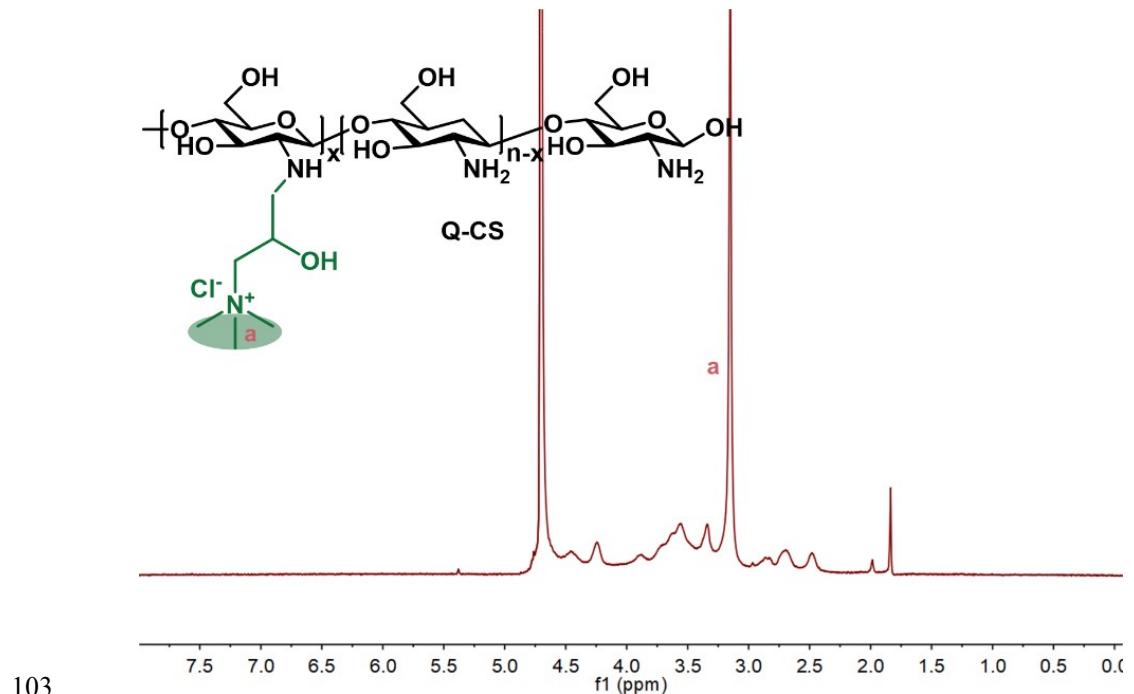
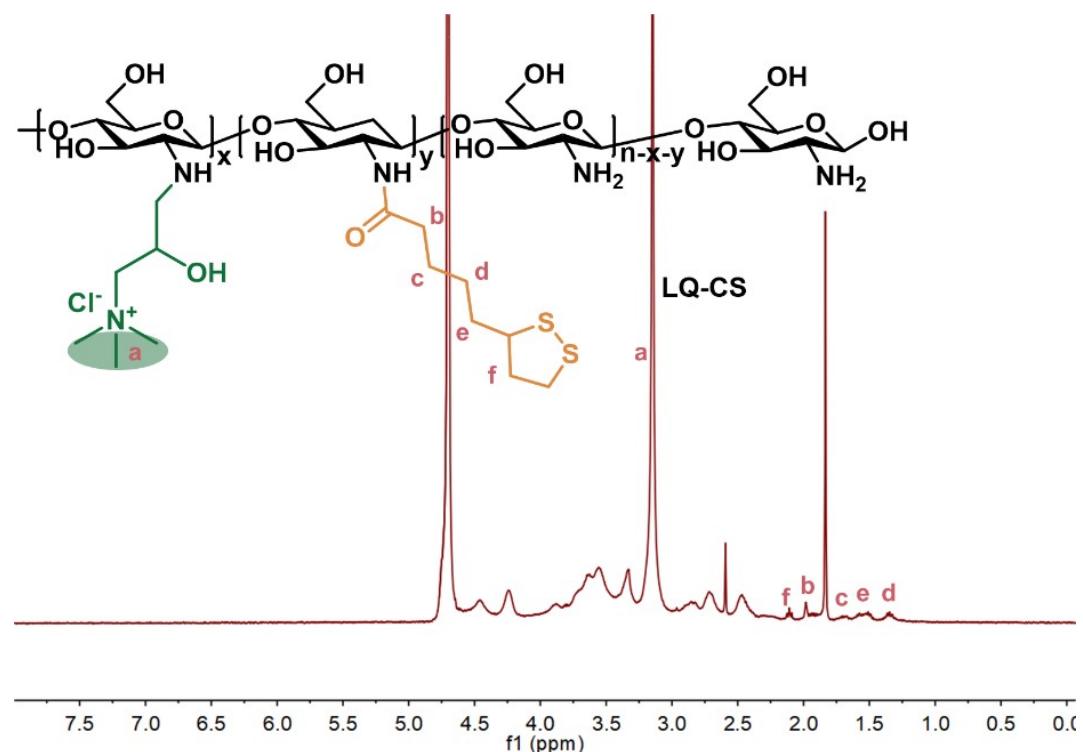
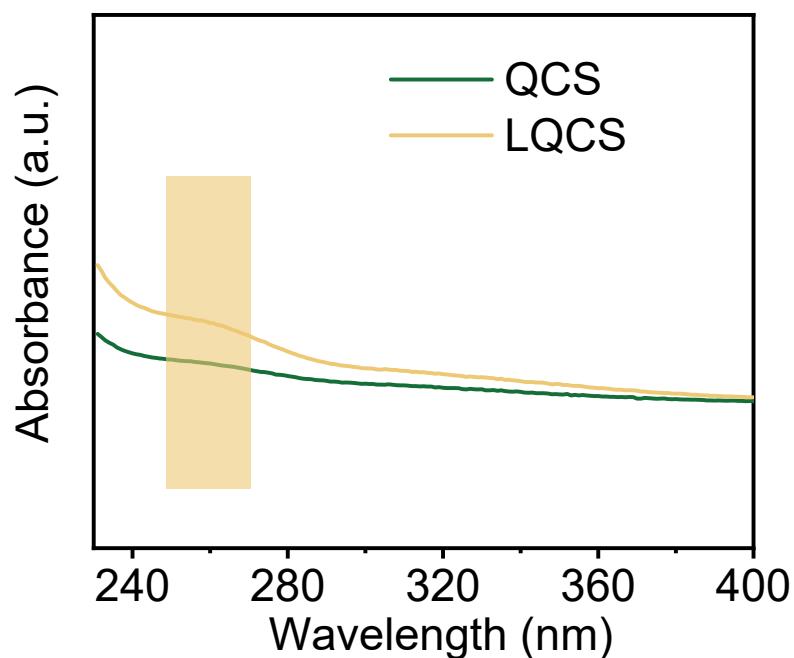
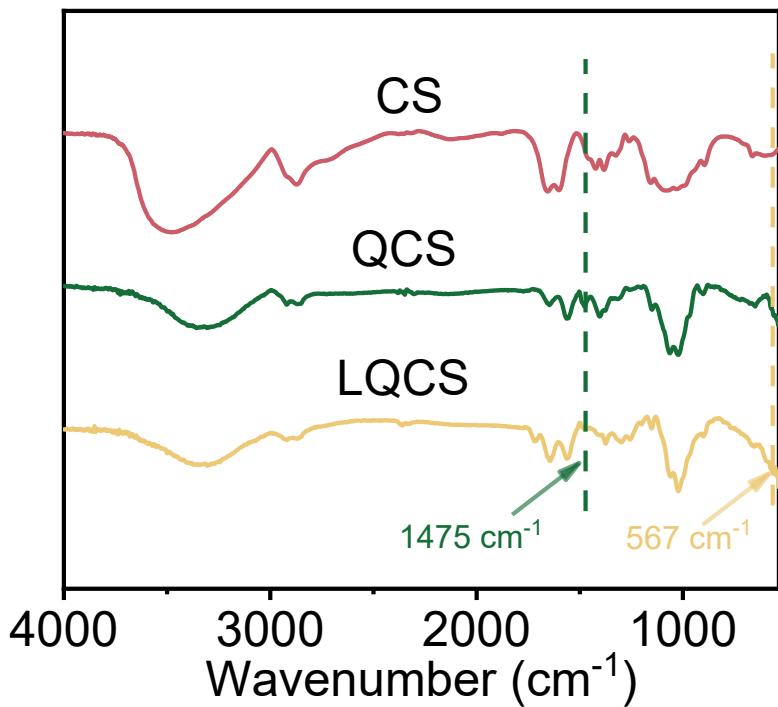
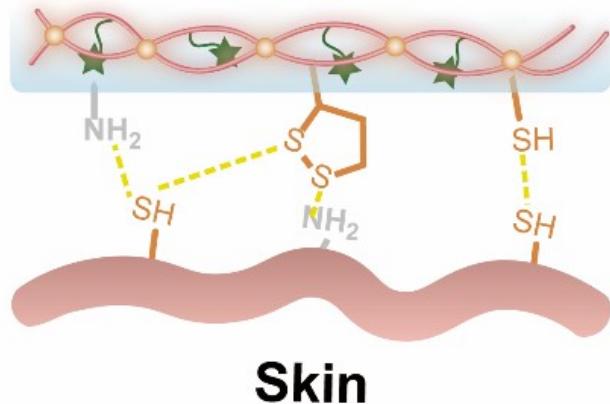







Figure S2. <sup>1</sup>H NMR spectra of QCS.





## LQCS Hydrogel



## Skin

116

117

118

**Figure S6.** Adhesion mechanism of LQCS hydrogels.