

Supplementary Information

Disposable Paper-Based Electrochemical Biosensor Employing g-C₃N₄/Carbon Dots and Toll-like Receptor for Ultrasensitive Detection of Gram-Negative Bacteria

Pravat Kumar Sahu^a, Shuvankar Bhunia^a, Asha Ramesh^a, Karri Trinadha Rao^b, Rahul Gangwar^b, Nitisha Beniwal^c, Aravind Kumar Rengan^c, Siva Rama Krishna Vanjari^{b*}, Subrahmanyam Challapalli^{a*}

^aDepartment of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana- 502285, India

^bDepartment of Electrical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana- 502285, India

^cDepartment of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, Telangana- 502285, India

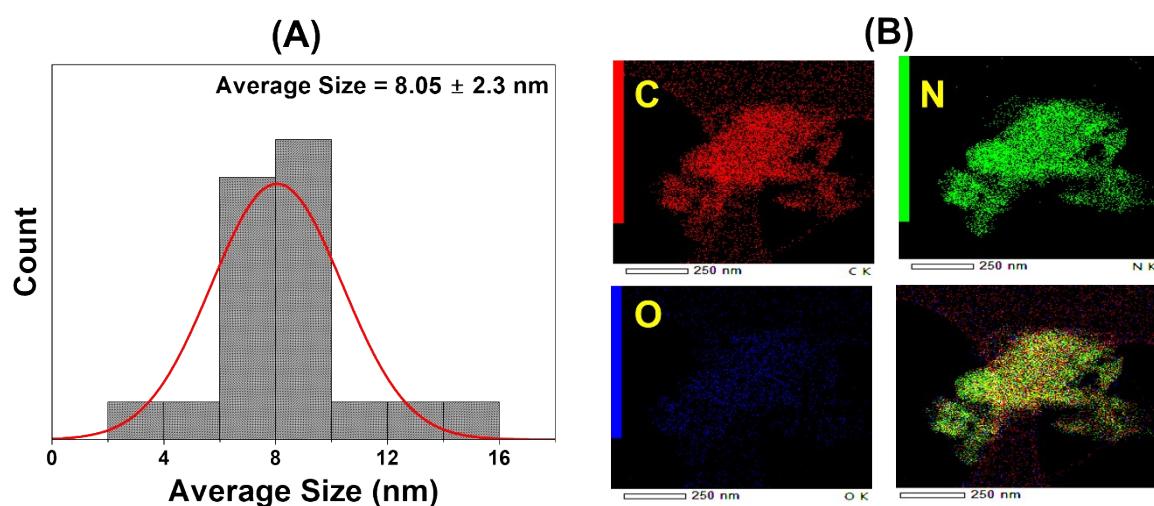
***Corresponding Authors:**

Prof. Subrahmanyam Challapalli

Email: csubbu@iith.ac.in

Prof. Siva Rama Krishna Vanjari

Email: svanjari@ee.iith.ac.in


Index

SL No	Description	Page Number
1.	Materials and Reagents.....	S3
2.	TEM Analysis (Fig. S1)	S3
3.	Bioelectrode Modification	S4
3.1.	FTIR and XPS analysis (Fig. S2 & Table S1)	S4
3.2.	SEM and AFM analysis (Fig. S3).....	S5
3.3.	Electrochemical characterization (Fig. S4).....	S6
4.	Determination of Electrochemical Active area (Table S2).....	S7
5.	Determination of Surface coverage (Table S3).....	S8
6.	Selectivity and Interference Study (Fig. S5).....	S9
7.	Real Sample Blank Study (Fig. S6).....	S9

1. Materials and Reagents

For this study, Graphite powder (20 μm), Ethyl cellulose (EC), n-Hexanol, Triton-X, 25 % Glutaraldehyde solution, Citric acid, and Dialysed bags were purchased from Sigma Aldrich. From Sisco Research Laboratories Pvt. Ltd, India, Melamine powder, Solid Paraffin wax, Bleaching solution (NaOCl), Potassium chloride (KCl), Ammonia solution (NH₄OH) and Sulfuric acid (H₂SO₄) were procured. All chemicals were used as received without further purification. Ivory drawing paper was ordered from Amazon, India and the Conductive silver ink was obtained from Thermo-scientific. The TLR-4/MD-2 bioreceptor were purchased from Sales Nulife (Abcam). All the experiments including cleaning and solution preparation were carried out using DI water with a resistivity of 18.2 M Ω /cm⁻¹.

2. TEM Analysis

Fig. S1(A) Average particle size of the carbon dots in the composite material, and **(B)** Elemental mapping of g-C₃N₄/CDs composite.

3. Bioelectrode Modification

3.1. FTIR and XPS analysis during modification steps

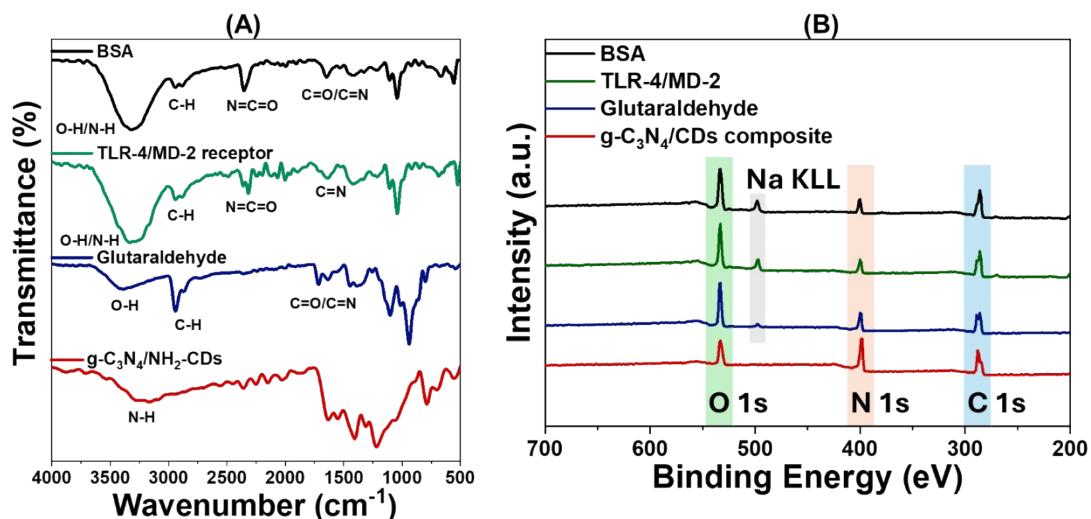
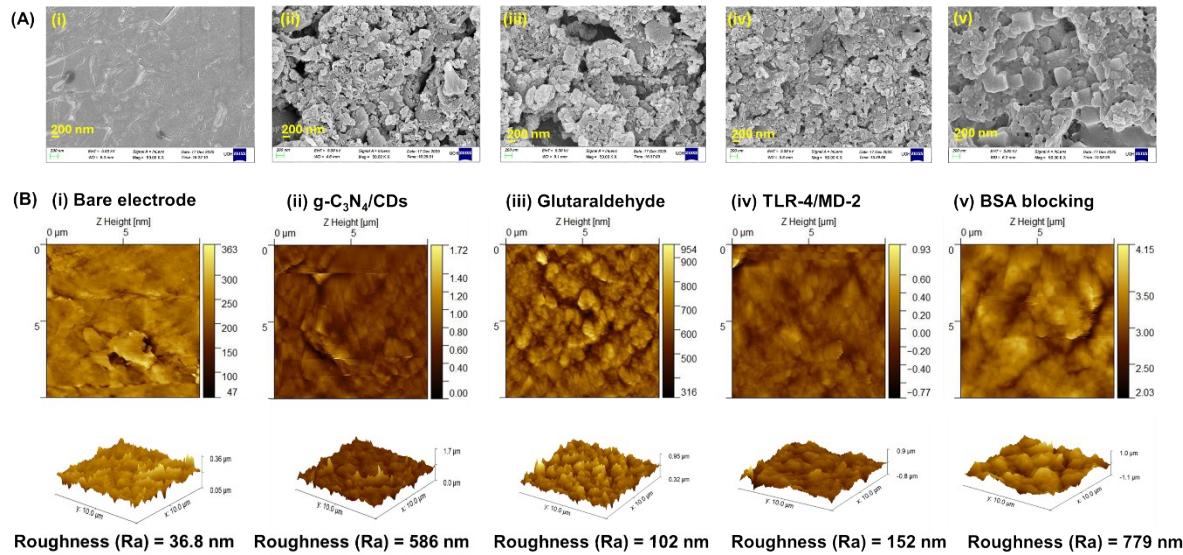
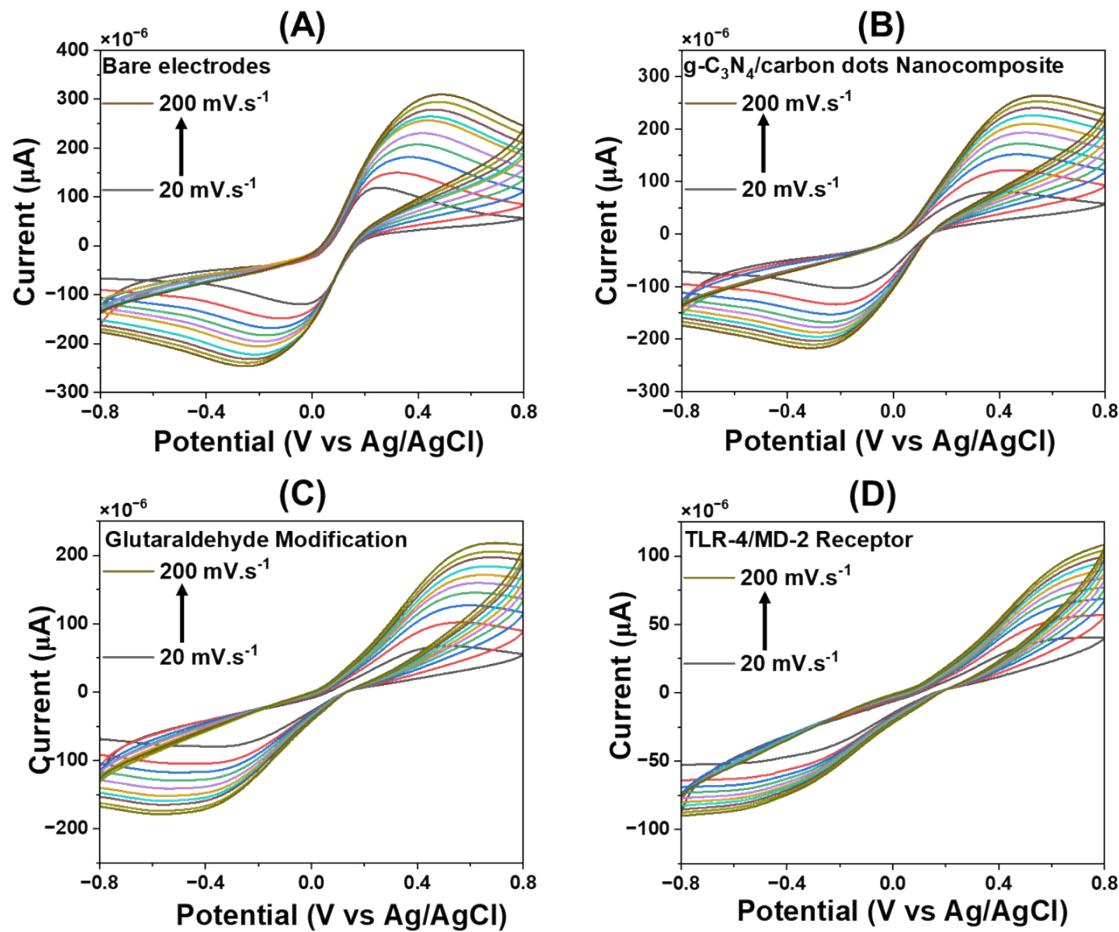



Fig. S2(A)FTIR analysis, and (B) XPS analysis of the layer-by-layer bioelectrode modification.

Table S1. Surface elemental composition of the bioelectrode obtained from XPS.


Modification	C (%)	N (%)	O (%)
$\text{g-C}_3\text{N}_4/\text{CDs}$	48.8	34	17.2
Glutaraldehyde	53.9	18.8	27.3
TLR-4/MD-2	59.1	13.2	27.7
BSA	57.7	12.2	30

3.2. SEM and AFM analysis during modification steps of bioelectrodes

Fig. S3. (A) SEM morphology study, **(B)** AFM analysis of the layer-by-layer modification step of the bioelectrodes.

3.3. Electrochemical characterisation

Fig. S4. (A) The Cyclic voltammetry (CV) study at varying scan rates from 20 mV/s to 200 mV/s of bare paper electrodes, (B) modified with $\text{g-C}_3\text{N}_4/\text{CDs}$ composite, (C) activation via glutaraldehyde bio-linker, and (D) after immobilisation of the TLR-4/MD-2 bio-receptor.

4. Determination of Electrochemically active surface area

The electrochemically active area of the bioelectrodes was obtained with the slope of the intensity of the anodic peak current and the square root of the scan rate from the Randle-Sevcik equation (**Equation S1**) for the electron-electron transfer process.

$$I_{pa} = (2.69 \times 10^5) n^{3/2} D^{1/2} C_o A_e v^{1/2} \dots \text{(Equation S1)}$$

Where I_{pa} = anodic current response

n = Number of electrons involved in the redox process ($n=1$)

D = Diffusion coefficient of the electroactive species = $6.7 \times 10^{-6} \text{ cm}^2/\text{s}$

C_o = Concentration of the electroactive species = $10 \text{ mM} = 10^{-5} \text{ mol/cm}^3$

A_e = Electrochemically active area

v = Scan rate.

So, equation S1 can be modified as

$$\text{Slope (A/V}^{1/2}) = (2.69 \times 10^5) n^{3/2} D^{1/2} C_o A_e$$

$$\text{Electrochemical Active (A}_e\text{)} = \text{Slope}/(2.69 \times 10^5) n^{3/2} D^{1/2} C_o$$

The slope of the anodic sweep from the calibration curve of the bare electrode was obtained as $19.9 \mu\text{A}/(\text{mV/s})^{1/2}$.

$$\text{Slope} = 19.9 \mu\text{A}/(\text{mV/s})^{1/2} = 19.9 \times 10^{-6} \text{ A}/(10^{-3} \text{ V/s})^{1/2} = 6.29 \times 10^{-4} \text{ A}/(\text{V/s})^{1/2}$$

Thus, the electrochemical active area (A_e) = $\text{Slope}/(2.69 \times 10^5) n^{3/2} D^{1/2} C_o = 6.29 \times 10^{-4} \text{ A}/(\text{V/s})^{1/2}/(2.69 \times 10^5) n^{3/2} D^{1/2} C_o = 0.09 \text{ cm}^2$.

Table S2: Electrochemical active area calculation using the Randles–Sevcik equation.

Electrochemically active surface area (ECAA) calculation

Modification Step	Slope ($\mu\text{A}/(\text{mV/s})^{1/2}$)	Slope (A/V/s ^{1/2})	ECAA (cm ²)
Bare DPE	19.9	6.29×10^{-4}	0.09
g-C ₃ N ₄ /NH ₂ -Carbon dots Nanocomposite	19.1	6.04×10^{-4}	0.086
Glutaraldehyde biolinker	14.9	4.71×10^{-4}	0.067
TLR-4/MD-2 bioreceptor Immobilisation	5.6	1.77×10^{-4}	0.025

5. Determination of Surface Coverage

The surface coverage of the modified bioelectrode was indirectly calculated using the Brown-Anson model, $I_p = n^2 F^2 \Gamma A_e v / 4RT$... (Equation S2)

$$\Gamma = n^2 F^2 A_e v / 4RT I_p$$

where:

I_p = peak current (A)

n = number of electrons transferred ($n=1$)

F = Faraday constant ($F= 96485 \text{ C mol}^{-1}$)

A = electrode active area (cm^2)

Γ = surface coverage (mol cm^{-2})

v = scan rate (V s^{-1}) = **0.40 V/s**

R = gas constant ($8.314 \text{ J mol}^{-1} \text{ K}^{-1}$)

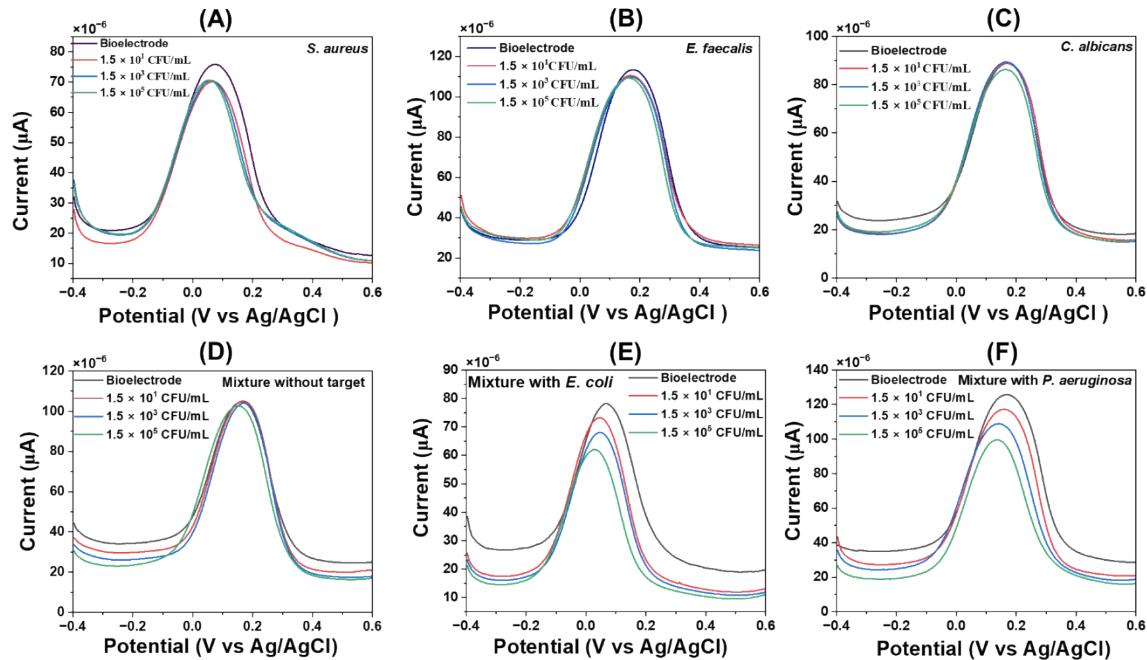
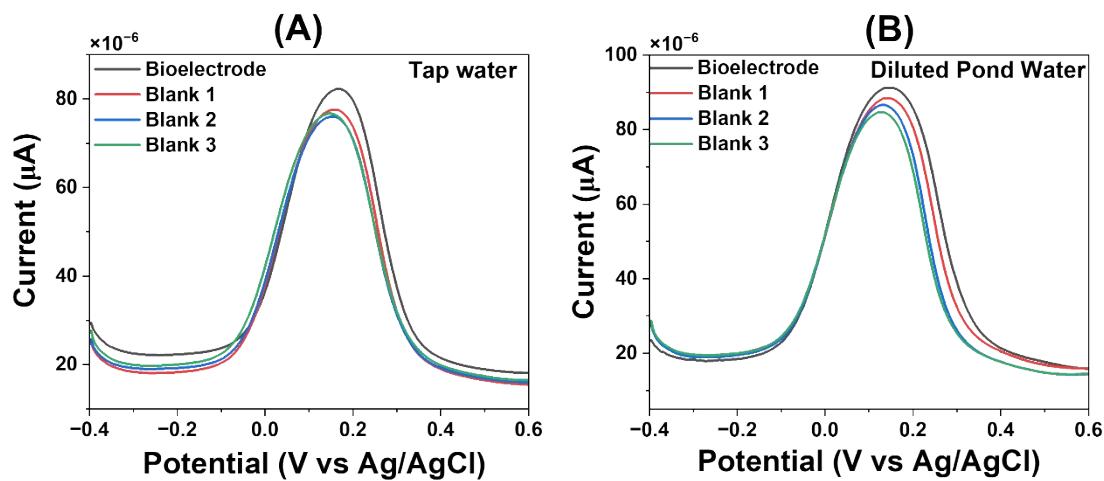

T = absolute temperature ($\approx 298 \text{ K}$ if room temp)

Table S3: Calculation of surface coverage using the Brown-Anson equation.


Calculation of Surface Coverage at a scan rate of 0.40 V/s

Modification Step	I_p (μA)	A_e (cm^2)	Γ (nmol/cm^2)
g-C₃N₄/NH₂-Carbon dots Nanocomposite	122	0.086	37.8
Glutaraldehyde biolinker	101	0.067	40.1
TLR-4/MD-2 bioreceptor Immobilisation	66.83	0.025	71.0

6. Selectivity and Interference Study

Fig. S5. Selectivity study of the bioelectrodes with (A) *S. aureus*, (B) *E. faecalis*, (C) *C. albicans*, (D) Interference study of the bioelectrodes with Mixture without gram-negative species, (E) Mixture of bacteria spiked with *E. coli*, and (F) Mixture of bacteria spiked with *P. aeruginosa*.

7. Real sample Blank Study

Fig. S6. (A) The blank current response of the tap water and (B) diluted pond water.