Supporting Information

Magnesium Halides as a Lead-free Family with Unique Optoelectronic Properties

Tingting Ye¹, Yunluo Wang¹, Shihao Ge², Tianrui Zhou¹, Jianghua Wu², Zesen Gao¹,

Ruifeng Liu¹, ZeSheng Pan¹, Meiling Zhu¹, Jingshan Hou², Minghui Wang³, Lianjun Wang^{1,*}, Haijie Chen^{1,*}, and Wan Jiang¹

¹State Key Laboratory of Advanced Fiber Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China ²School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China

³Analysis and Testing Center, Donghua University, Shanghai, 201620, China

Figure S1. After DSC measurements, the PXRD spectra of (a) Li₂MgCl₄, (b) RbMgCl₃,

(c) $CsMgCl_3$ and (d) Cs_2MgCl_4 were compared with the standard cards.

Figure S2. The PXRD patterns of (a) $CsMgBr_3$, (b) $NaMgCl_3$, (c) $KMgCl_3$ and (d) Li_2MgBr_4 were compared with standard cards.

Figure S3. The SEM images and EDS elemental mapping of (a) Li₂MgCl₄, (b) RbMgCl₃, (c) CsMgCl₃ and (d) Cs₂MgCl₄.

Figure S4. The relationship of $\ln[(I_0/I_T)-1]$ with $1/(k_BT)$ in (a) Li₂MgCl₄, (b) RbMgCl₃, (c) CsMgCl₃ and (d) Cs₂MgCl₄. (The inset are temperature-dependent PL spectra of (a) Li₂MgCl₄, (b) RbMgCl₃, (c) CsMgCl₃ and (d) Cs₂MgCl₄.)

Figure S5. The correlation between integrated PL intensity and temperature.

Figure S6. The CIE coordinates of PL in (a) Li₂MgCl₄, (b) RbMgCl₃, (c) CsMgCl₃ and (d) Cs₂MgCl₄ at different temperatures.

Figure S7. The PL decay curves of (a) $\text{Li}_2\text{Mg}_{0.92}\text{Mg}_{0.08}\text{Cl}_4$, (b) $\text{RbMg}_{0.92}\text{Mg}_{0.08}\text{Cl}_3$, (c) $\text{CsMg}_{0.92}\text{Mg}_{0.08}\text{Cl}_3$ and (d) $\text{Cs}_2\text{Mg}_{0.92}\text{Mg}_{0.08}\text{Cl}_4$. The fluorescence lifetime of the samples was calculated by using the single exponential equation: $y = y_0 + A_1 e^{-x/\tau}$.

Figure S8. Absorption spectra of (a) $Li_2Mg_{0.92}Mg_{0.08}Cl_4$, (b) $RbMg_{0.92}Mg_{0.08}Cl_3$, (c)

 $CsMg_{0.92}Mg_{0.08}Cl_3$ and (d) $Cs_2Mg_{0.92}Mg_{0.08}Cl_4$.

Figure S9. The Taua equation is used to calculate the optical band gaps of (a) $Li_2Mg_{0.92}Mg_{0.08}Cl_4$, (b) $RbMg_{0.92}Mg_{0.08}Cl_3$, (c) $CsMg_{0.92}Mg_{0.08}Cl_3$ and (d) $Cs_2Mg_{0.92}Mg_{0.08}Cl_4$.

Figure S10. The change of cell constants of $CsMg_{1-x}Mn_xCl_3$ (x = 0 - 0.1).

Figure S11. The PXRD patterns of (a) $CsMg_{1-x}Mn_xCl_3$ (x = 0 - 0.1), (b) $RbMg_{1-x}Mn_xCl_3$ (x = 0/0.08), (c) $Cs_2Mg_{1-x}Mn_xCl_4$ (x = 0/0.08) and (d) $Li_2Mg_{1-x}Mn_xCl_4$ (x = 0/0.08) were

compared with standard cards.

Figure S12. X-ray photoelectron spectra of (a) $Li_2Mg_{0.92}Mg_{0.08}Cl_4$, (b) RbMg_{0.92}Mg_{0.08}Cl_3, (c) CsMg_{0.92}Mg_{0.08}Cl_3 and (d) Cs₂Mg_{0.92}Mg_{0.08}Cl_4.

Figure S13. (a) and (b) are PLE and PL spectra of $CsMg_{1-x}Mn_xCl_3$ (x = 0 - 0.1).

Figure S14. PL spectra of as-prepared $CsMg_{0.92}Mn_{0.08}Cl_3$ powders. (The inset is a

magnified spectrum from 400 nm to 520 nm.)

Figure S15. Luminescence contrast images of CsMgCl₃ with different Mn(II) ions doped concentrations under natural light and 254 nm UV lamp excitation were compared.

Figure S16. CIE chromaticity coordinates of $CsMg_{1-x}Mn_xCl_3$ (x = 0 - 0.1) displays.

Figure S17. (a) Normalized PLE spectra of $CsMg_{0.92}Mn_{0.08}Cl_3$ were measured at different emission wavelengths in the range of 605 nm - 695 nm. (b) Normalized PL spectra of $CsMg_{0.92}Mn_{0.08}Cl_3$ at different excitation wavelengths were measured in the range of 240 nm - 280 nm.

Figure S18. Comparison of variable temperature luminescence intensity of Mg halides.

Figure S19. The CIE coordinates of PL in (a) $Li_2Mg_{0.92}Mg_{0.08}Cl_4$, (b) RbMg_{0.92}Mg_{0.08}Cl_3, (c) $CsMg_{0.92}Mg_{0.08}Cl_3$ and (d) $Cs_2Mg_{0.92}Mg_{0.08}Cl_4$ at different temperatures.

Figure S20. The result of PLQY measurements for (a) $CsMgCl_3$, (b) $CsMg_{0.92}Mn_{0.08}Cl_3$, (c) $Cs_2Mg_{0.92}Mn_{0.08}Cl_4$, (d) $Lis_2Mg_{0.92}Mn_{0.08}Cl_4$ and (e) $RbMg_{0.92}Mn_{0.08}Cl_3$.

S.No	Phosphor compositions	Activation energy $E_a(eV)$	Reference		
1	CsMnCl ₃	0.11	[1]		
2	CsCdCl ₃	0.62	[2]		
3	MAPbI ₃	0.32	[3]		
]4	[C ₆ H ₇ ClN]CdCl ₃	0.11	[4]		
5	$Cs_2CaCl_4 \cdot 2H_2O$	0.45	[5]		
6	[PPh ₃ H] ₂ [SbCl ₅]	0.58	[6]		
7	CsMgCl ₃	0.37	This work		
8	Cs ₂ MgCl4	0.19	This work		
9	RbMgCl ₃	0.27	This work		
10	Li ₂ MgCl ₄	0.31	This work		

Table S1. The comparison of the activation energy for the Mg halides and some well

 known metal halides

Samples	Space group	a (Å)	b (Å)	c(Å)	α(°)	β(°)	γ(°)	Ζ	Cell volume (Å ³)
CsMgCl ₃	P6 ₃ /mmc	7.260	7.260	6.170	90	90	120	2	282.09
$CsMg_{0.94}Mn_{0.06}Cl_3$	P6 ₃ /mmc	7.267	7.267	6.181	90	90	120	2	282.65
$CsMg_{0.93}Mn_{0.07}Cl_{3}$	P6 ₃ /mmc	7.273	7.273	6.189	90	90	120	2	283.12
$CsMg_{0.92}Mn_{0.08}Cl_{3}$	P6 ₃ /mmc	7.279	7.279	6.191	90	90	120	2	283.30
$CsMg_{0.91}Mn_{0.09}Cl_3$	P6 ₃ /mmc	7.281	7.281	6.193	90	90	120	2	283.45
$CsMg_{0.9}Mn_{0.1}Cl_3$	P6 ₃ /mmc	7.289	7.289	6.201	90	90	120	2	283.78
RbMgCl ₃	P6 ₃ /mmc	7.095	7.095	17.578	90	90	120	6	766.31
RbMg _{0.92} Mn _{0.08} Cl ₃	P6 ₃ /mmc	7.125	7.125	17.589	90	90	120	6	766.48
Cs_2MgCl_4	Pnma	7.514	9.777	13.234	90	90	90	4	972.23
$Cs_2Mg_{0.92}Mn_{0.08}Cl_4$	Pnma	7.626	9.790	13.244	90	90	90	4	972.31
Li ₂ MgCl ₄	Fd-3m	10.401	10.401	10.401	90	90	90	8	1125.19
Li2Mg0.92Mn0.08Cl4	Fd-3m	10.413	10.413	10.413	90	90	90	8	1125.68

Table S2. The cell parameters of the Mg halides.

1. Meng, Q.; Chen, L.; Jing, L.; Pang, Q.; Zhang, J. Z., Enhancing photoluminescence of manganese chloride perovskite-analogues through phase transformations induced by Sn incorporation. *Journal of Luminescence* **2023**, *255*, 119613.

2. Chakchouk, N.; Almalawi, Dhaifallah R.; Smaili, Idris H.; Aljuaid, F.; Rhaiem, Abdallah B., Investigation of Charge Transfer Mechanism and Dielectric Relaxation in CsCdCl₃ Perovskite. *Applied Organometallic Chemistry* **2025**, *39* (3), e7871.

3. Patel, V.; Sorathia, k.; Unjiya, K.; Patel, R.; Pandey, S. V.; Kalam, A.; Prochowicz, D.; Akin, S.; Yadav, P. K., Machine Learning-Driven Analysis of Activation Energy for Metal Halide Perovskites. *Dalton Transactions* **2025**.

4. Xu, H.; Zhang, Z.; Dong, X.; Huang, L.; Zeng, H.; Lin, Z.; Zou, G., Corrugated 1D Hybrid Metal Halide [C₆H₇ClN]CdCl₃ E xhibiting Broadband White-Light Emission. *Inorganic Chemistry* **2022**, *61* (11), 4752-4759.

5. Wang, H.; Pan, Y.; Ding, Y.; Lian, H.; Lin, J.; Li, L., Tunable Multicolor Emission and High Thermal Stability in Single-Matrix Luminescent Crystals Based on Calcium Perovskites for Advanced Solid-State Lighting Applications. *Advanced Optical Materials* **2024**, *12* (24), 2400935.

6. Peng, Y.-C.; Zhou, S.-H.; Jin, J.-C.; Zhuang, T.-H.; Gong, L.-K.; Lin, H.-W.; Wang, Z.-P.; Du, K.-Z.; Huang, X.-Y., [PPh₃H]₂[SbCl₅]: A Zero-Dimensional Hybrid Metal Halide with a Supramolecular Framework and Stable Dual-Band Emission. *The Journal of Physical Chemistry C* **2022**, *126* (40), 17381-17389.