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Figure S1. (a) The low-resolution, (b) High-resolution TEM images, and (c) selected-

area electron diffraction pattern of TiNS nanosheets.
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Figure S2. STEM image (a) and EDS elemental mapping images (b-d) of TINSs@1Ag
nanosheets.
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Figure S3. STEM image (a) and EDS elemental mapping images (b-d) of TINSs@3Ag

nanosheets.

Figure S4. STEM image (a) and EDS elemental mapping images (b-d) of TINSs@5Ag

nanosheets.
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Figure S5. EDS-elemental mapping analysis diagram and element content of (a)
TiNSs@1Ag, (b) TINSs@3Ag, and (c) TiNSs@5Ag nanosheets in Figure S2-S4.
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Figure S6. The fitted XRD patterns of PVDF/TiNSs nanocomposites with (a) 0, (b)
0.1, () 0.3, (d) 0.5, (e) 0.7 and (f) 1.0 wt. % of Tiy 70, nanosheets. With the addition
of only 0.1 wt.% of TiNSs, we observed the onset of diffraction peaks from the
crystalline f-phase of PVDF. The content of f-PVDF was found to increase with the
increasing content of TiNSs, and reached about 98% at 1.0 wt% of TiNSs, suggesting
the “complete” phase transformation from a- to f-phase PVDEF. This phenomenon is in
contrast to those observed in BNNS-P(VDF-CTFE) nanocomposites, in which the a-
phase PVDF only changed in the mean size of the crystalline domains as derived from
several main diffraction peaks, while the content of f-phase PVDF remained nearly
unchanged at a rather low fraction (< 2.0%) with the increasing addition of BNNS.



Table S1. Relative contents of a- to f-phase and crystallinity for pure PVDF and
PVDEF/TiNSs nanocomposites, as estimated from the fitted XRD patterns in terms of

the integral area of relevant diffraction peaks for each phase and amorphous hola of the
PVDF matrix.

Sample a (%) B (%) Crystallinity (%)
PVDF 45.1 0 45
0.1 wt.% TiNSs 27.2 8.8 36
0.3 wt.% TiNSs 11.6 19.2 31
0.5 wt.% TiNSs 0.2 19.6 20
0.7 wt.% TiNSs 1.3 24.7 26
1.0 wt.% TiNSs 0.7 23.0 24
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Figure S7. Fourier transforms infrared (FTIR) spectra of pure PVDF and TiNSs /PVDF
nanocomposites with different filler contents.
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Figure S8. Thermogravimetric analysis (TGA) curves of pure PVDF and TiNSs /PVDF

nanocomposites during a cooling cycle with a ramp of 10 °C min-'.
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Figure S9. Frequency dependence of dielectric constant (solid) and dielectric loss
(hollow) for TiNSs/PVDF nanocomposite films.
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Figure S10. Frequency dependence of dielectric constant (solid) and dielectric loss
(hollow) for 0.3 wt.% TiNSs@Ag/PVDF nanocomposite films.

The Coulomb-blockade effect of Ag nanoparticles can be described using a
simplified energy level model, where N electrons are confined between two electrodes.
The high charging energy of the Ag nanoparticles induces local electron repulsion,
restricting the mobility of electrons in the interfacial TiNSs@Ag (un+1). The
electrostatic energy of the Ag nanoparticles increases by ¢?/2C, which corresponds to
the energy gap, where C represents the self-capacitance of the Ag nanoparticles. As a
result, the (N + 1)th electron cannot tunnel through the Ag nanoparticles unless the
charging energy exceeds the thermal energy (kg7), where T is the room temperature
and kg is the Boltzmann constant. However, if a bias voltage is applied to the left
electrode (uy), raising its potential above that of un., the (N + 1)th electron can then
undergo quantum mechanical tunneling through the Ag nanoparticles, as illustrated in
Fig. S11(b).

Figure S11. Illustration of the Coulomb-blockade effect in Ag nanoparticles: (a) The
energy gap induced by Ag nanoparticles between the energy states of yn+1 and p.(b)
The (N + 1)th electron can tunnel quantum mechanically once the applied voltage V is

sufficiently high to overcome the Coulomb repulsion, closing the energy gap.
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Figure S12. (a) Weibull breakdown strength of the pure PVDF and TiNSs/PVDF
nanocomposite films. (b) Variation of breakdown strength as a function of TiNSs
content. (c) Variation of leakage current density with electric field. (d) Electric

displacement-electric field loops obtained at 10 Hz. (e) The discharged energy density
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and (f) charge-discharge efficiency are plotted as a function of an electric field.
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Figure S13. (a) Weibull breakdown strength of the TiNSs@Ag nanocomposite films.
(b) Electric displacement-electric field loops obtained at 10 Hz. (c) The discharged

energy density and (d) charge-discharge efficiency are plotted as a function of an

electric field.
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Figure S14. (a) UV-visible absorption spectra and (b) plots of the optical bandgap for
pristine PVDF and PVDF-UV 15 min films.



