Silver-adsorbed Ti_{0.87}O₂ Nanosheets and UV Irradiation Synergistically Improve Energy Storage Performance of Polyvinylidene fluoride-based Nanocomposites Hexing Liu^a, Yi Sun^a, Cong Wang^a, Jiayu Chen^a, Zhong-Hui Shen^b, Xin Zhang^b, Bao-Wen Li^a, ^{b*}

^a State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China ^b School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

Figure S1. (a) The low-resolution, (b) High-resolution TEM images, and (c) selectedarea electron diffraction pattern of TiNS nanosheets.

Figure S2. STEM image (a) and EDS elemental mapping images (b-d) of TiNSs@1Ag nanosheets.

Figure S3. STEM image (a) and EDS elemental mapping images (b-d) of TiNSs@3Ag nanosheets.

Figure S4. STEM image (a) and EDS elemental mapping images (b-d) of TiNSs@5Ag nanosheets.

Figure S5. EDS-elemental mapping analysis diagram and element content of (a) TiNSs@1Ag, (b) TiNSs@3Ag, and (c) TiNSs@5Ag nanosheets in Figure S2-S4.

Figure S6. The fitted XRD patterns of PVDF/TiNSs nanocomposites with (a) 0, (b) 0.1, (c) 0.3, (d) 0.5, (e) 0.7 and (f) 1.0 wt. % of Ti_{0.87}O₂ nanosheets. With the addition of only 0.1 wt.% of TiNSs, we observed the onset of diffraction peaks from the crystalline β -phase of PVDF. The content of β -PVDF was found to increase with the increasing content of TiNSs, and reached about 98% at 1.0 wt% of TiNSs, suggesting the "complete" phase transformation from α - to β -phase PVDF. This phenomenon is in contrast to those observed in BNNS-P(VDF-CTFE) nanocomposites, in which the α -phase PVDF only changed in the mean size of the crystalline domains as derived from several main diffraction peaks, while the content of β -phase PVDF remained nearly unchanged at a rather low fraction (< 2.0%) with the increasing addition of BNNS.

Table S1. Relative contents of α - to β -phase and crystallinity for pure PVDF and PVDF/TiNSs nanocomposites, as estimated from the fitted XRD patterns in terms of the integral area of relevant diffraction peaks for each phase and amorphous hola of the PVDF matrix.

Sample	α (%)	β (%)	Crystallinity (%)
PVDF	45.1	0	45
0.1 wt.% TiNSs	27.2	8.8	36
0.3 wt.% TiNSs	11.6	19.2	31
0.5 wt.% TiNSs	0.2	19.6	20
0.7 wt.% TiNSs	1.3	24.7	26
1.0 wt.% TiNSs	0.7	23.0	24

Figure S7. Fourier transforms infrared (FTIR) spectra of pure PVDF and TiNSs /PVDF nanocomposites with different filler contents.

Figure S8. Thermogravimetric analysis (TGA) curves of pure PVDF and TiNSs /PVDF nanocomposites during a cooling cycle with a ramp of 10 °C min⁻¹.

Figure S9. Frequency dependence of dielectric constant (solid) and dielectric loss (hollow) for TiNSs/PVDF nanocomposite films.

Figure S10. Frequency dependence of dielectric constant (solid) and dielectric loss (hollow) for 0.3 wt.% TiNSs@Ag/PVDF nanocomposite films.

The Coulomb-blockade effect of Ag nanoparticles can be described using a simplified energy level model, where N electrons are confined between two electrodes. The high charging energy of the Ag nanoparticles induces local electron repulsion, restricting the mobility of electrons in the interfacial TiNSs@Ag (μ_{N+1}). The electrostatic energy of the Ag nanoparticles increases by $e^2/2C$, which corresponds to the energy gap, where C represents the self-capacitance of the Ag nanoparticles. As a result, the (N + 1)th electron cannot tunnel through the Ag nanoparticles unless the charging energy exceeds the thermal energy (k_BT), where T is the room temperature and k_B is the Boltzmann constant. However, if a bias voltage is applied to the left electrode (μ_L), raising its potential above that of μ_{N+1} , the (N + 1)th electron can then undergo quantum mechanical tunneling through the Ag nanoparticles, as illustrated in Fig. S11(b).

Figure S11. Illustration of the Coulomb-blockade effect in Ag nanoparticles: (a) The energy gap induced by Ag nanoparticles between the energy states of μ_{n+1} and μ_{n} .(b) The (N + 1)th electron can tunnel quantum mechanically once the applied voltage V is sufficiently high to overcome the Coulomb repulsion, closing the energy gap.

Figure S12. (a) Weibull breakdown strength of the pure PVDF and TiNSs/PVDF nanocomposite films. (b) Variation of breakdown strength as a function of TiNSs content. (c) Variation of leakage current density with electric field. (d) Electric displacement-electric field loops obtained at 10 Hz. (e) The discharged energy density and (f) charge-discharge efficiency are plotted as a function of an electric field.

Figure S13. (a) Weibull breakdown strength of the TiNSs@Ag nanocomposite films. (b) Electric displacement-electric field loops obtained at 10 Hz. (c) The discharged energy density and (d) charge-discharge efficiency are plotted as a function of an electric field.

Figure S14. (a) UV-visible absorption spectra and (b) plots of the optical bandgap for pristine PVDF and PVDF-UV 15 min films.