

## Electronic Supplementary Information

# **Sn<sup>2+</sup>-Coordinated Polyethylenimine as Electron Transport Layer for High-Efficiency and Stable Inverted Organic Solar Cells**

Yuntao Hu<sup>1†</sup>, Shuo Wan<sup>1†</sup>, Yi Li<sup>1</sup>, Huiting Fu<sup>1</sup>, Qingdong Zheng<sup>1\*</sup>

<sup>1</sup> State Key Laboratory of Coordination Chemistry, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.

† These authors contributed equally to this work.

\* Corresponding authors (email: zhengqd@nju.edu.cn).

## Materials

PM6 and Y6 were purchased by Solarmer Materials Inc. Polyethylenimine (PEI,  $M_w = 25,000$  g/mol), tin (II) acetate, cobalt (II) acetate, manganese (II) acetate, nickel (II) acetate, 1-butanol, 1-chloronaphthalene, chloroform, MoO<sub>x</sub> were purchased from Sigma-Aldrich. All the other reagents and solvents were purchased commercially as analytically pure and used without further purification.

## Device Fabrication

In this paper, OSCs were fabricated with an inverted structure of ITO/ETL/PM6:Y6/MoO<sub>x</sub>/Ag. ITO glass was ultrasonically cleaned with detergent, deionized water, acetone and isopropanol for 15 min each, then dried overnight in an oven, and subsequently subjected to UV-O<sub>3</sub> treatment for 15 min prior to use. For the preparation of PEI ETL Solution, PEI (30 mg) was dissolved in 1.1 mL of 1-butanol and stirred at 80 °C for 12 h. The solution was then diluted to 0.01 wt% with 1-butanol. For the preparation of PEI-Sn<sup>2+</sup> ETL Solution, PEI (30 mg) was dissolved in 1.1 mL of 1-butanol and stirred at 80 °C for 12 h. Then, different amount of tin (II) acetate was added into the PEI solution, and stirred for 3 h before coating. For the optimized Sn-to-N mole ratio of 3:1, 1.3 mg of tin (II) acetate was added to the 1 mL 0.01 wt% PEI

solution and stirred until the solution became clear. Afterward, The PEI, PEI-Sn<sup>2+</sup> solutions were deposited on the cleaned ITO glass substrates by spin-coating at 3000 rpm for 30 s and the electron transport layer doesn't require annealing. The above operations are all done in the air environment. PM6 and Y6 were dissolved in chloroform solvent at a mass ratio of 1:1.2, the total concentration of the active layer solution was 16.5 mg/mL, and 0.6% volume of 1-chloronaphthalene was added, and stirred at 50 °C for 60 min. The BHJ active layer solution was spin-coated on top of the ETL layers at 3000 rpm for 30 s and thermally annealed at 80 °C/5 min. The above operations were all completed in the N<sub>2</sub> glove box. Finally, MoO<sub>x</sub> (10 nm) and Ag (100 nm) were sequentially deposited on top of the BHJ active layer by thermal evaporation at  $5 \times 10^{-5}$  Pa through a shadow mask. The photoactive area of each BHJ unit was 0.042 cm<sup>2</sup>.

### **Characterizations**

X-ray photoelectron spectra (XPS) of Si/PEI and Si/PEI-Sn<sup>2+</sup> were tested by the Thermo Scientific Al K-Alpha XPS system with energy steps of 0.1 eV. <sup>1</sup>H NMR spectra were measured on a Bruker Avance III 400 MHz spectrometer using deuterated methanol and deuterated Chloroform as the solvent with tetramethylsilane ( $\delta=0$ ) as the internal standard. The absorption and transmittance spectra were measured by a UV-vis spectrophotometer (UV-2600i). Ultraviolet photo-electron spectroscopy (UPS) was tested by Thermo Fisher Scientific Nexsa with using a He I discharge lamp. Atomic force microscopy (AFM) of the ITO/PEI and ITO/PEI-Sn<sup>2+</sup> sample were measured through tapping mode with a Bruker Dimension Icon instrument in air. The water and diiodomethane contact angle images of neat films were recorded by using a CA100C under atmospheric conditions. The conductivity of ETLs is estimated by measuring the current-voltage (*I-V*) curves of the devices with the sandwich structure ITO/ETL/Ag based on Ohm's law. Current density-voltage (*J-V*) characteristics were recorded in the glove box with a Keithley 2400 Source Measure Unit under room temperature. The photocurrent was tested under AM 1.5G illumination at 100 mW cm<sup>-2</sup> using a solar simulator (SS-X50, Enlitech). The EQE spectra were measured by using a solar-cell

spectral-response measurement system (QE-R, Enlitech). The electrochemical impedance spectroscopy (EIS) measurements were characterized by the CHI604E electrochemical workstation, at frequencies from 1 MHz to 10 Hz. A bias voltage equal to  $V_{oc}$  was applied to offset the total current.

**Photocurrent density ( $J_{ph}$ )-effective voltage ( $V_{eff}$ ) measurements.**

The photocurrent density  $J_{ph}$  is defined as  $J_{ph} = J_L - J_D$ , where  $J_L$  and  $J_D$  are the photocurrent densities under illumination and in the dark, respectively. The effective voltage  $V_{eff}$  is defined as  $V_{eff} = V_0 - V_{bias}$ , where  $V_0$  is the voltage at which  $J_{ph}$  is zero and  $V_{bias}$  is the applied external voltage bias. The  $V_{eff}$  raises a suitable internal electric field in the device to suppress the charge recombination. In our case, the  $J_{ph}$  is saturated at  $V_{eff}$  of 1 V. The charge dissociation probability ( $P_{diss}$ ) was estimated by the value of  $J_{ph}/J_{sat}$ , where  $J_{sat}$  represents the saturated photocurrent density.

**Hole- and Electron-Only Device Fabrication and Characterization**

Hole and electron mobilities were measured using the space charge limited current (SCLC) method. Hole-only devices were fabricated with ITO/PEDOT:PSS/PM6:Y6/MoO<sub>x</sub>/Ag, while electron-only devices were fabricated with ITO/ETL/ PM6:Y6/PNDIT-F<sub>3</sub>N/ Ag. The active layers were prepared using the same method for the best-performance OSC fabrication. Device areas were fixed at 0.042 cm<sup>2</sup>. A Keithley 2440 source measurement unit measured the current density ( $J$ ). The SCLC hole/electron mobilities were calculated according to the following equation:

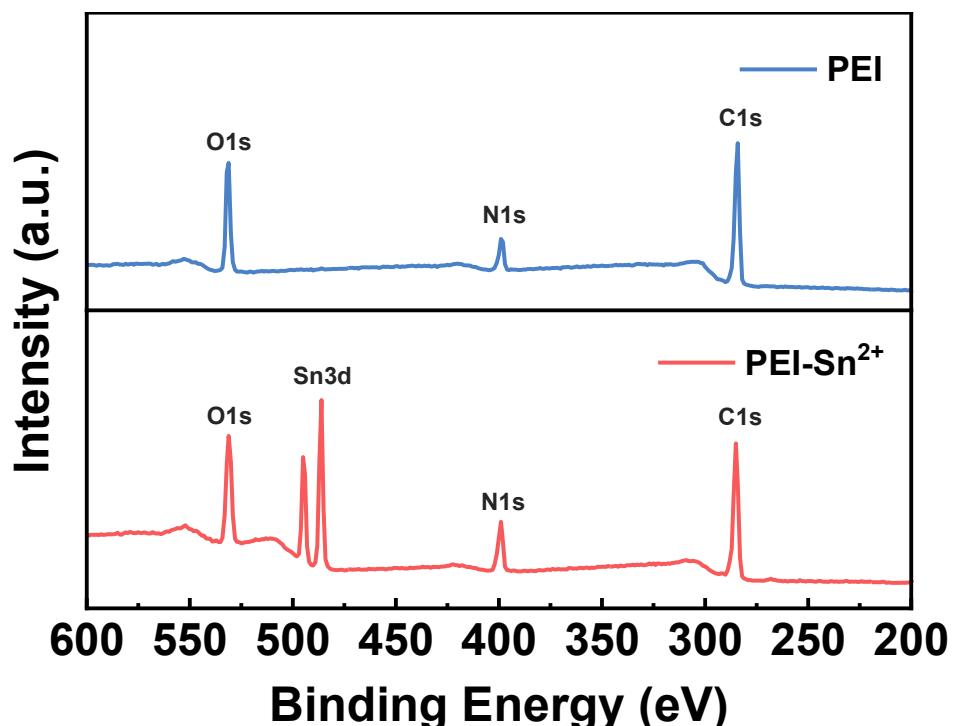
$$J = \frac{9\epsilon_r\epsilon_0\mu V^2}{8L^3}$$

Where  $J$  is the current density (A m<sup>-2</sup>),  $\epsilon_0$  is the free-space permittivity ( $8.85 \times 10^{-12}$  F m<sup>-1</sup>), and  $\epsilon_r$  is the relative dielectric constant of the active layer material, usually 2-4 for organic semiconductors, herein we used a relative dielectric constant of 3,  $\mu$  is the mobility of hole or electron,  $V$  is the voltage drop across the SCLC device ( $V = V_{app} - V_{bi}$ , where  $V_{app}$  is the applied voltage to the device and  $V_{bi}$  is the built-in voltage due to the difference in the work function of two electrodes, in the hole- and electron-only devices,

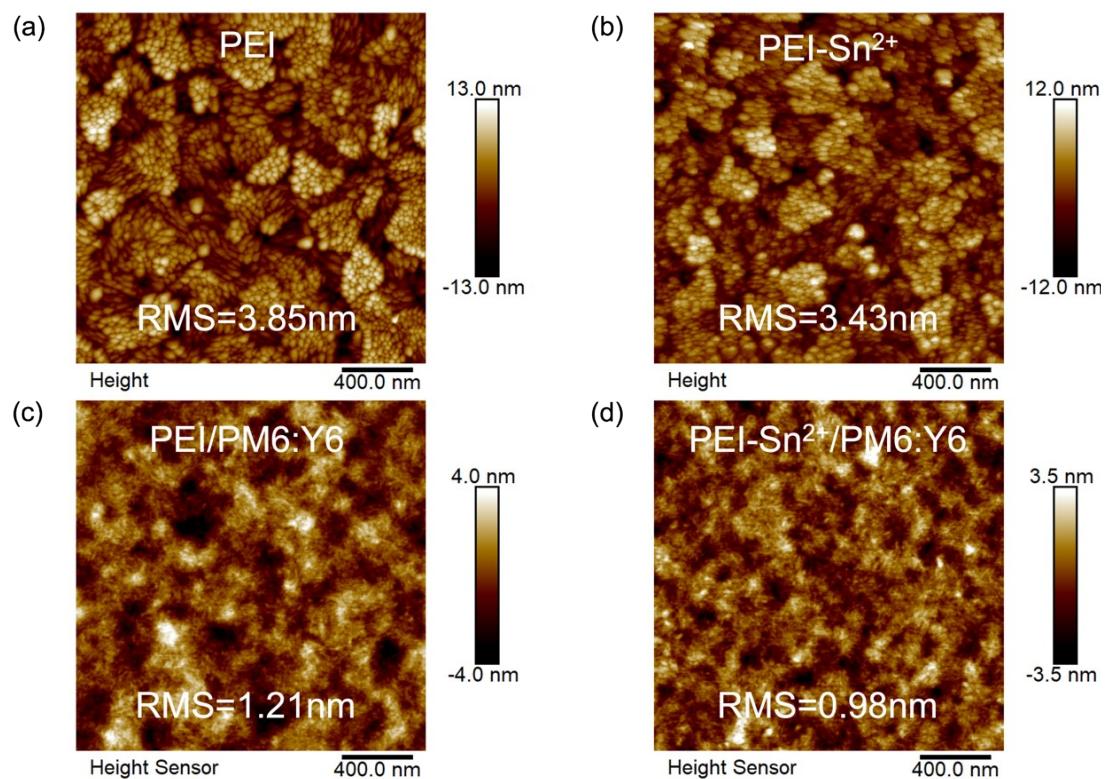
the  $V_{bi}$  values are 0.5 and 0.7 V, respectively), and  $L$  is the thickness of the active layer. The film thickness was detected by a Bruker Dektak XT surface profilometer. The hole- or electron mobilities were calculated from the slopes of the  $J^{1/2}$ - $V$  curves.

### Stability Measurements

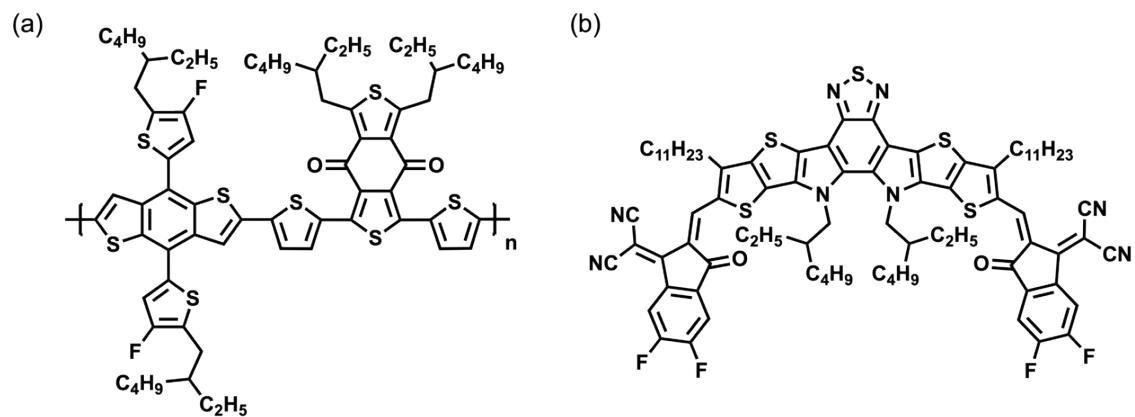
#### *Storage Stability:*


Unencapsulated devices were placed in an  $N_2$ -filled glove-box.

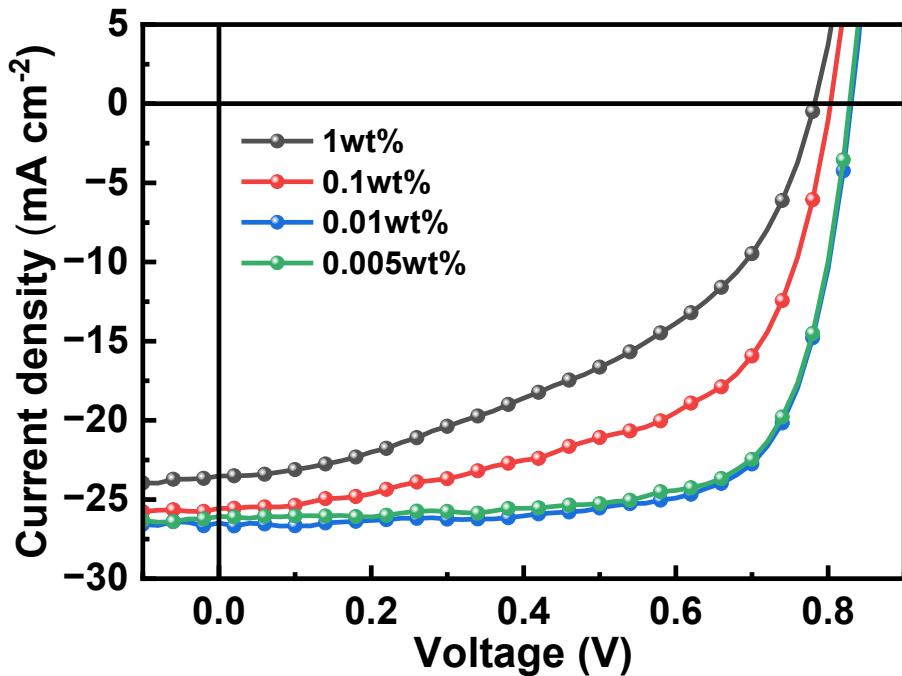
#### *Thermal stability:*


For thermal stability evaluation, unencapsulated devices were heated at 65 °C on a hotplate under the open-circuit conditions in an  $N_2$ -filled glove-box.

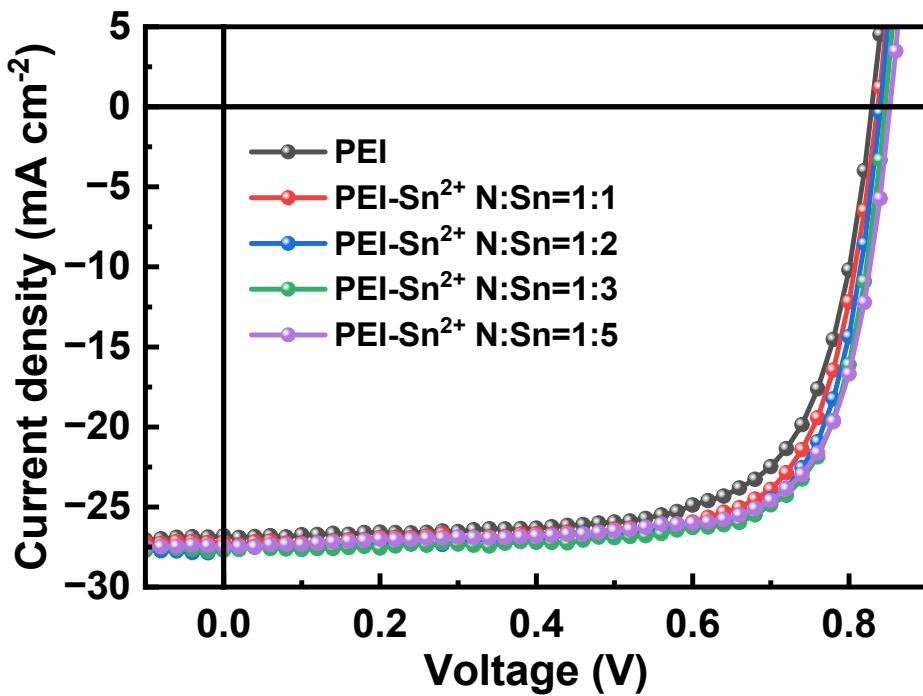
#### *Photostability:*


The stability tracked under continuous illumination (100 mW  $cm^{-2}$ ) at maximum power point (MPP) was investigated based on optimum devices.

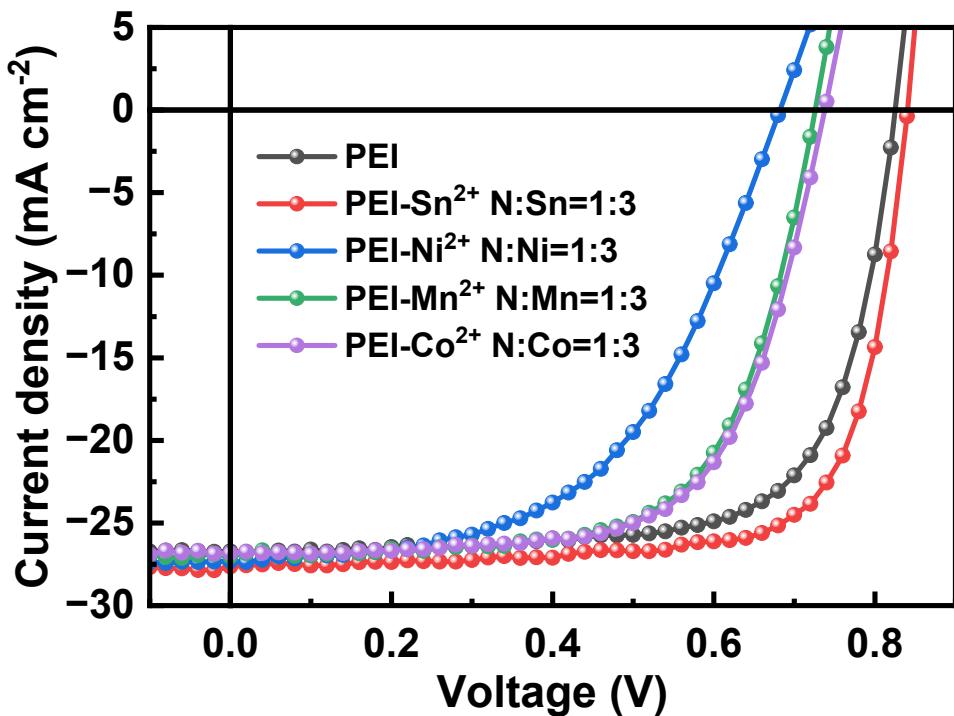



**Figure S1.** The full XPS spectra of PEI and PEI- $Sn^{2+}$ .

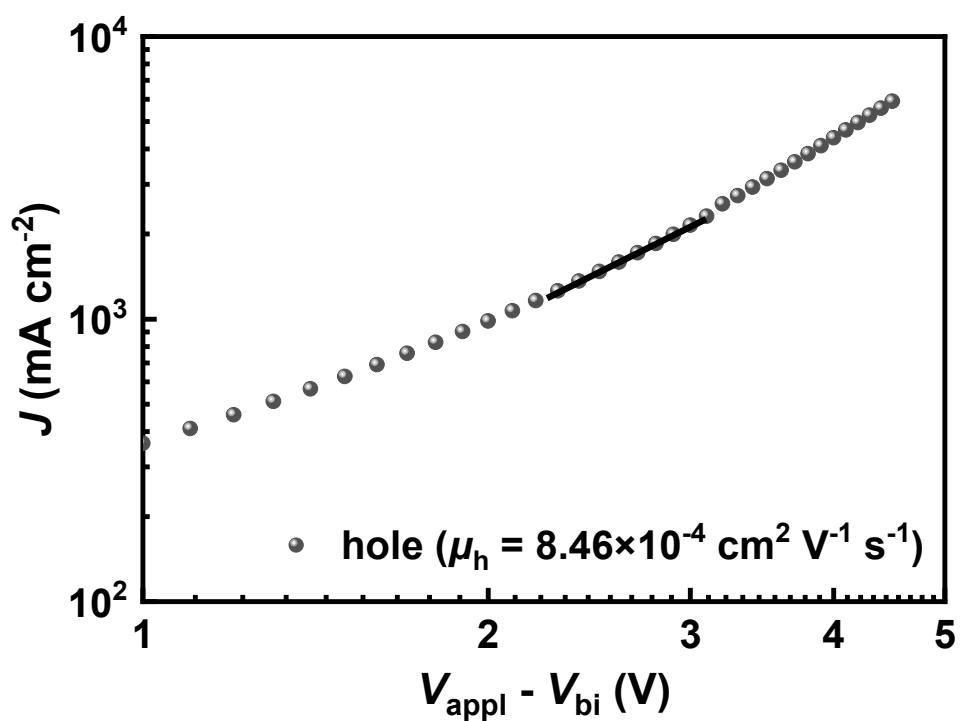



**Figure S2.** AFM height images of a) PEI, b) PEI-Sn<sup>2+</sup>, c) PEI/PM6:Y6, d) PEI-Sn<sup>2+</sup>/PM6:Y6.




**Figure S3.** The chemical structures of a) PM6 and b) Y6 used in the devices.




**Figure S4.**  $J$ - $V$  characteristics of PM6:Y6 devices based on PEI ETL of different thicknesses.



**Figure S5.**  $J$ - $V$  characteristics of PM6:Y6 devices with PEI-Sn $^{2+}$  ETL containing different N-to-Sn mole ratios.



**Figure S6.**  $J$ - $V$  characteristics of PM6:Y6 devices with different ions coordinated PEI ETLs.



**Figure S7.** SCLC curve for the hole-only device based on PM6:Y6.

**Table S1.** Contact angles, surface tensions  $\gamma$ 

| Surface                  | $\theta_{\text{Water}}$ [deg] | $\theta_{\text{Diiodomethane}}$ [deg] | $\gamma$ [mN m <sup>-1</sup> ] |
|--------------------------|-------------------------------|---------------------------------------|--------------------------------|
| ITO                      | 33.4                          | 33.5                                  | 63.1                           |
| ITO/PEI                  | 31.2                          | 22.4                                  | 65.7                           |
| ITO/PEI-Sn <sup>2+</sup> | 46.8                          | 49.4                                  | 52.8                           |
| PM6:Y6                   | 99.1                          | 51.0                                  | 34.3                           |

The surface tension was calculated by

$$\gamma_{\text{water}}(1 + \cos \theta_{\text{water}}) = 2\sqrt{\gamma_{\text{water}}^d \gamma^d} + 2\sqrt{\gamma_{\text{water}}^p \gamma^p}$$

$$\gamma_{\text{DI}}(1 + \cos \theta_{\text{DI}}) = 2\sqrt{\gamma_{\text{DI}}^d \gamma^d} + 2\sqrt{\gamma_{\text{DI}}^p \gamma^p}$$

$$\gamma_{\text{total}} = \gamma^d + \gamma^p$$

where  $\theta$  is the droplet contact angle on the organic thin film;  $\gamma_{\text{total}}$  is the surface tension of the organic material, which is equal to the sum of the dispersion ( $\gamma^d$ ) and polarity ( $\gamma^p$ ) components;  $\gamma_i$  is the surface tension of the liquid droplet (water or DI);  $\gamma^d$  and  $\gamma^p$  are the dispersion and polarity components of  $\gamma_{\text{total}}$ , respectively.

**Table S2.** Photovoltaic Parameters of PM6:Y6 devices based on PEI ETL of different thicknesses under the illumination of AM 1.5 G, 100 mW cm<sup>-2</sup>

| PEI ETL   | $V_{\text{oc}}$ (V) | $J_{\text{sc}}$ (mA cm <sup>-2</sup> ) | FF (%) | PCE (%) |
|-----------|---------------------|----------------------------------------|--------|---------|
| 1 wt%     | 0.782               | 23.6                                   | 45.9   | 8.43    |
| 0.1 wt%   | 0.804               | 25.6                                   | 57.4   | 11.8    |
| 0.01 wt%  | 0.826               | 26.6                                   | 72.2   | 15.8    |
| 0.005 wt% | 0.822               | 26.4                                   | 71.6   | 15.7    |

**Table S3.** Photovoltaic parameters of PM6:Y6 devices with PEI-Sn<sup>2+</sup> ETL containing different N-to-Sn mole ratios under the illumination of AM 1.5 G, 100 mW cm<sup>-2</sup>

| ETL                           | $V_{oc}$ (V) | $J_{sc}$ (mA cm <sup>-2</sup> ) | FF (%) | PCE (%) |
|-------------------------------|--------------|---------------------------------|--------|---------|
| PEI                           | 0.827        | 26.9                            | 70.9   | 15.7    |
| PEI-Sn <sup>2+</sup> N:Sn=1:1 | 0.835        | 27.3                            | 73.1   | 16.7    |
| PEI-Sn <sup>2+</sup> N:Sn=1:2 | 0.839        | 27.7                            | 73.9   | 17.3    |
| PEI-Sn <sup>2+</sup> N:Sn=1:3 | 0.845        | 27.7                            | 74.4   | 17.5    |
| PEI-Sn <sup>2+</sup> N:Sn=1:5 | 0.850        | 27.5                            | 73.5   | 17.2    |

**Table S4.** Photovoltaic parameters of PM6:Y6 devices with different ions coordinated PEI ETLs under the illumination of AM 1.5 G, 100 mW cm<sup>-2</sup>

| ETL                           | $V_{oc}$ (V) | $J_{sc}$ (mA cm <sup>-2</sup> ) | FF (%) | PCE (%) |
|-------------------------------|--------------|---------------------------------|--------|---------|
| PEI                           | 0.824        | 26.7                            | 70.9   | 15.6    |
| PEI-Sn <sup>2+</sup> N:Sn=1:3 | 0.840        | 27.7                            | 74.2   | 17.3    |
| PEI-Ni <sup>2+</sup> N:Ni=1:3 | 0.682        | 27.3                            | 53.3   | 9.9     |
| PEI-Mn <sup>2+</sup> N:Mn=1:3 | 0.725        | 26.9                            | 65.9   | 12.8    |
| PEI-Co <sup>2+</sup> N:Co=1:3 | 0.737        | 26.8                            | 66.1   | 13.0    |

**Table S5.** Charge-transporting properties of the PEI and PEI-Sn<sup>2+</sup> based devices

| ETL                  | $\mu_e$ (10 <sup>-4</sup> cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) <sup>a)</sup> | $\mu_e/\mu_h$ |
|----------------------|-------------------------------------------------------------------------------------------|---------------|
| PEI                  | 7.30<br>(7.07 ± 0.36)                                                                     | 0.86          |
| PEI-Sn <sup>2+</sup> | 9.01<br>(8.78 ± 0.30)                                                                     | 1.06          |

<sup>a)</sup> In parentheses are average values with standard deviations based on 5 devices.

**Table S6.** Comparison of the PCE in this work with those of the inverted OSCs in some recent reports

| Active layer                      | ETL                  | PCE (%) | Ref.      |
|-----------------------------------|----------------------|---------|-----------|
| PBDB-T-2F:IT-4F                   | PEI-Zn               | 13.29   | S1        |
| PM6:Y6:PC <sub>71</sub> BM        | ZnO/a-PEI            | 15.70   | S2        |
| PM6:Y6                            | PEI-Ph               | 16.34   | S3        |
| PM6:Y6:PC <sub>71</sub> BM        | carbon dots          | 16.80   | S4        |
| PM6:BTP-BO-4F:PC <sub>71</sub> BM | PEI-GDE-BS           | 17.55   | S5        |
| PM6:Y6                            | ZnO-P                | 16.47   | S6        |
| PM6:Y6                            | PDIEIE               | 15.04   | S7        |
| PM6:Y6                            | PEI-Sn <sup>2+</sup> | 17.50   | This work |

## References

- S1. F. Qin, W. Wang, L. Sun, X. Jiang, L. Hu, S. Xiong, T. Liu, X. Dong, J. Li, Y. Jiang, J. Hou, K. Fukuda, T. Someya and Y. Zhou, *Nat. Commun.*, 2020, **11**, 4508.
- S2. L. Hu, Y. Y. Jiang, L. L. Sun, C. Xie, F. Qin, W. Wang and Y. H. Zhou, *J. Phys. Chem. Lett.*, 2021, **12**, 2607-2614.
- S3. L. Hu, W. You, C. Xie, H. Zheng, L. Han, D. Zhou, Y. Jin, J. Song, X. Yin, Z. Su, Y. Zhou and Z. Li, *Sol. RRL*, 2022, **6**, 2200486.
- S4. Y. Dong, R. Yu, B. Zhao, Y. Gong, H. Jia, Z. Ma, H. Gao and Z. A. Tan, *ACS Appl. Mater. Interfaces*, 2022, **14**, 1280-1289.
- S5. H. Nie, M. Busireddy, H. Shih, C. Ko, J. Chen, C. Chang and C. Hsu, *ACS Appl. Mater. Interfaces*, 2023, **15**, 1718-1725.
- S6. H. Zheng, D. Zhou, L. Hu, Z. Xu, H. Xu, Y. Zhang, Y. Tong, B. Hu, Z. Li and L. Chen, *Sol. RRL*, 2022, **6**, 2200871.
- S7. Y. Li, T. Li, J. Wang, X. Zhan and Y. Lin, *Sci. Bull.*, 2022, **67**, 171-177.