Supporting Information

Exploring Structure and Thermoelectric Properties of p-type Ge_{1-x}In_xSb₄Te₇

Compounds

Peng Li^{a,b,#}, Hu Zhang^{c,#}, Lu Lu^{b,*}, Wenpeng Jia^a, Yongli Liu^a, Weiwei Meng^{d,*}, Chuanlin Zhang^b,

Weiping Tong^a, Shao-Bo Mi^{b,e,*}

^aSchool of Materials Science and Engineering, Northeastern University, Shenyang 110819, China

^bJi Hua Laboratory, Foshan, 528200, China

^cSchool of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, China

^dSouth China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou

510006, China

^eSchool of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China

* Corresponding Authors

Lu Lu, Email: <u>lulu@jihualab.ac.cn</u> Weiwei Meng, Email: <u>wwmeng@m.scnu.edu.cn</u>

Shao-Bo Mi, Email: sbmi1973@gmail.com

Supplementary Text

The theoretical minimum lattice thermal conductivity (κ_{min}) of GeSb₄Te₇ was about 0.102 W m⁻¹ K⁻¹, which is calculated by using the Cahill's model: ^[1]

$$\kappa_{\min} = \frac{1}{2.48} k_B n^{\frac{2}{3}} (2v_t + v_l)$$

where $k_{\rm B}$ is the Boltzmann constant (1.38×10⁻²³ J/K), *n* is the number density of atoms (in units of atoms/m³), v_t and v_l are respectively the transverse and longitudinal sound velocity (m/s).

The atomic number density (*n*) can be determined by $n = \frac{\rho \cdot N_A}{M}$, where N_A : Avogadro's number $(6.022 \times 10^{23} \text{ mol}^{-1})$; ρ : density of the material (kg/m³); M: molar mass (kg/mol). The calculated density of GeSb₄Te₇ is 6150 kg/m^3 .

To evaluate the transverse $({}^{\nu}t)$ and longitudinal $({}^{\nu}l)$ sound velocity, the elastic moduli (C_{ij}) including six independent elastic constants (GPa) was first calculated for GeSb₄Te₇:^[2]

93.710	20.754	40.894	- 26.995	0	0 •
20.754	93.710	40.894	26.995	0	0
40.894	40.894	82.430	0	0	0
- 26.995	26.995	0	58.508	0	0
0	0	0	0	58.508	- 26.995
0	0	0	0	- 26.995	36.478

Accordingly, longitudinal sound velocity is $v_l = \sqrt{\frac{C_{33}}{\rho}} = 3661.04$ m/s and transverse sound $v_t = \sqrt{\frac{C_{44}}{\rho}} = 3084.40$ m/s for waves propagating

velocity (polarized perpendicular to the *c*-axis) is

along the *c*-axis [0001] direction.

References

[1] D. G. Cahill, R. O. Pohl, Lattice vibrations and heat transport in crystals and glasses, Annu. Rev. Phys. Chem. 1988, 39, 93-121.

[2] N. G. Pace and G. A. Saunders, Elastic wave propagation in the group VB semimetals, J. Phys. Chem. Solids 1971, 32, 1585–1601.

Fig. S1 A schematic drawing illustrates the cuboid specimens obtained from the cylinder-shaped specimens for the measurements of transport properties.

Fig. S2 The Lorentz number (*L*) estimated from an experimental Seebeck coefficient (*S*) by $L = 1.5 + \exp\left[-\frac{|S|}{116}\right]_{\text{for Ge}_{1-x}\text{In}_x\text{Sb}_4\text{Te}_7}$ (x=0, 0.05, 0.075, and 0.1) compounds.

Fig. S3 (a) A typical XRD pattern of powders prepared from $Ge_{0.875}In_{0.125}Sb_4Te_7$ sample. The lattice planes calculated from PDF#89-2232 (GeSb₄Te₇) are listed. (b) The zoom-in view shows that apart from (0004) diffraction peak, an extra peak appears as denoted by a vertical arrow, which can be indexed as (0006) diffraction peak of Sb₂Te₃.

Fig. S4 A zoom-in view of the $(01\overline{1}4)$ diffraction peaks for GeSb₄Te₇ and Ge_{0.9}In_{0.1}Sb₄Te₇ compounds. The $(01\overline{1}4)$ reflection peaks shift towards lower angles can be discerned. Red vertical broken lines indicate the peak location.