Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

## **Supplementary Information**

## Harnessing Machine Learning to Probe Dielectrics in Next Generation Telecommunication and Automotive Radar Applications

Amit Kumar Sharma<sup>1</sup>, Tai-Ming Zheng<sup>1</sup>, Yen-Lun Chiu<sup>1</sup>, Kao-Shuo Chang<sup>1</sup>, I-Ting Li<sup>1</sup>, Jr-Jeng Ruan<sup>1</sup>, Pin-Chao Liao<sup>2</sup>, Chia-Yun Chen<sup>1</sup>, Jyh-Ming Ting<sup>1</sup>, Yen-Hsun Su<sup>1</sup>\*

<sup>1</sup> Department of Materials Science and Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan City 70101, Taiwan

<sup>2</sup> Program on Semiconductor Packaging and Testing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan

\* Corresponding author: <a href="mailto:yhsu@mail.ncku.edu.tw">yhsu@mail.ncku.edu.tw</a>

**Table S1:** The synthesis parameters for  $Ba_3(VO_4)_2$ -doped  $Mg_2SiO_4$  used as the original input data for the machine learning model, were obtained through the solid-state reaction method.

|                |          | Compound | Ba3(VO4)2<br>doping<br>amount | Sintering<br>time (hr) |                                  | Output variable |                     |                            |                        |                    |                           |
|----------------|----------|----------|-------------------------------|------------------------|----------------------------------|-----------------|---------------------|----------------------------|------------------------|--------------------|---------------------------|
| Mg/Si<br>ratio | Impurity |          |                               |                        | Sintering<br>temperature<br>(°C) | Proportion      | Sintered<br>Density | Test<br>frequency<br>(GHz) | Dielectric<br>Constant | Dielectric<br>loss | Experimental Q×f<br>value |
| 2              | Ν        | Y        | 50                            | 4                      | 1175                             | 50              | 97.6                | 11.3                       | 9.48                   | 0.0004             | 46600                     |
| 2              | Ν        | Y        | 45                            | 4                      | 1175                             | 55              | 97                  | 11.3                       | 9.03                   | 0.0004             | 52500                     |
| 2              | Ν        | Y        | 40                            | 4                      | 1200                             | 60              | 97.3                | 11.3                       | 8.81                   | 0.0004             | 55900                     |
| 2              | Ν        | Y        | 35                            | 4                      | 1200                             | 65              | 97                  | 11.3                       | 8.44                   | 0.0004             | 52200                     |

**Table S2:** The synthesis parameters for LiF-doped  $Mg_2SiO_4$  used as the original input data for the machine learning model, were obtained through the solid-state reaction method.

|       |          |          |        |           |                                  | Input v        | Output variable     |                            |                        |                    |                           |
|-------|----------|----------|--------|-----------|----------------------------------|----------------|---------------------|----------------------------|------------------------|--------------------|---------------------------|
| ratio | Impurity | Compound | amount | time (hr) | Sintering<br>temperature<br>(°C) | Proportio<br>n | Sintered<br>Density | Test<br>frequency<br>(GHz) | Dielectric<br>Constant | Dielectric<br>loss | Experimental<br>Q×f value |
| 2     | Ν        | Y        | 0.5    | 4         | 1200                             | 99.5           | 97.1                | 12.8                       | 6.98                   | 0.002              | 171000                    |
| 2     | Ν        | Y        | 1      | 4         | 950                              | 99             | 97                  | 12.8                       | 7.02                   | 0.002              | 162300                    |
| 2     | Ν        | Y        | 2      | 4         | 800                              | 98             | 97                  | 12.8                       | 6.81                   | 0.002              | 167000                    |
| 2     | Ν        | Y        | 3      | 4         | 800                              | 97             | 97                  | 12.8                       | 6.95                   | 0.002              | 160300                    |

**Table S3:** The synthesis parameters for LMZBS-doped  $Mg_2SiO_4$  used as the original input data for the machine learning model, were obtainedthrough the solid-state reaction method.

| Impurity |          | LMZBS              | Sintering |                | Output<br>variable               |                |                     |                            |                        |                    |                           |
|----------|----------|--------------------|-----------|----------------|----------------------------------|----------------|---------------------|----------------------------|------------------------|--------------------|---------------------------|
|          | Compound | addition<br>amount | time (hr) | Mg/Si<br>ratio | Sintering<br>temperature<br>(°C) | Proportio<br>n | Sintered<br>Density | Test<br>frequency<br>(GHz) | Dielectric<br>Constant | Dielectric<br>loss | Experimental<br>Q×f value |
| Y        | Ν        | 0                  | 3         | 2              | 1400                             | 100            | 97.2                | 10.76                      | 7.24                   | 0.0022             | 54820                     |
| Y        | Ν        | 0                  | 3         | 2.025          | 1400                             | 100            | 97.2                | 10.85                      | 7.43                   | 0.0018             | 73620                     |
| Y        | Ν        | 0                  | 3         | 2.05           | 1400                             | 100            | 97.2                | 10.57                      | 7.5                    | 0.0016             | 114730                    |
| Y        | Ν        | 0                  | 3         | 2.2            | 1400                             | 100            | 97.2                | 10.45                      | 7.59                   | 0.0013             | 107370                    |
| Ν        | Ν        | 0                  | 3         | 2              | 1075                             | 100            | 92.6                | 11.35                      | 7.2                    | 0.0022             | 193800                    |
| Y        | Ν        | 0                  | 2         | 2              | 1400                             | 100            | 96.7                | 16                         | 6.8                    | 0.000066           | 240000                    |
| Ν        | Ν        | 0                  | 2         | 2              | 1550                             | 100            | 95                  | 13                         | 7.1                    | 0.002              | 168400                    |
| Y        | Y        | 0.5                | 2         | 2              | 1525                             | 99.5           | 97                  | 13                         | 7.3                    | 0.001              | 198503.4                  |
| Y        | Y        | 1                  | 2         | 2              | 1375                             | 99             | 96                  | 13                         | 7.2                    | 0.001              | 190574.2                  |
| Y        | Y        | 3                  | 2         | 2              | 1250                             | 97             | 96                  | 13                         | 7.15                   | 0.001              | 203276.5                  |
| Y        | Y        | 5                  | 2         | 2              | 1250                             | 95             | 95                  | 13                         | 6.9                    | 0.002              | 181046.3                  |
| Y        | Y        | 10                 | 2         | 2              | 1000                             | 90             | 93                  | 13                         | 6.76                   | 0.002              | 217718.7                  |
| Y        | Y        | 15                 | 2         | 2              | 950                              | 85             | 91                  | 13                         | 6.75                   | 0.003              | 30600                     |

**Table S4:** The synthesis parameters for MgO-doped  $Zn_2SiO_4$  used as the original input data for the machine learning model, were obtained through the solid-state reaction method.

|                     |                        |     | Input variables               |                     |          |          |                     | Output variable        |  |
|---------------------|------------------------|-----|-------------------------------|---------------------|----------|----------|---------------------|------------------------|--|
| MgO addition amount | Zn/Si ratio Proportion |     | Sintering temperature<br>(°C) | Dielectric Constant | Compound | Impurity | Sintering time (hr) | Experimental Q×f value |  |
| 0                   | 2                      | 100 | 1250                          | 6.4                 | N        | Ν        | 3                   | 108000                 |  |
| 10                  | 2                      | 90  | 1250                          | 6.5                 | Y        | Ν        | 3                   | 21500                  |  |
| 20                  | 2                      | 80  | 1250                          | 6.385               | Y        | Ν        | 3                   | 38500                  |  |
| 30                  | 2                      | 70  | 1250                          | 6.245               | Y        | Ν        | 3                   | 73021                  |  |
| 40                  | 2                      | 60  | 1250                          | 6.097               | Y        | Ν        | 3                   | 129991                 |  |
| 50                  | 2                      | 50  | 1250                          | 6.52                | Y        | Ν        | 3                   | 98500                  |  |
| 0                   | 1.8                    | 100 | 1300                          | 6.6                 | Ν        | Y        | 3                   | 147000                 |  |

**Table S5:** Fabrication parameters for antenna design through number of sides of polygon and thickness as the original input data for the machine learning model.

| Input va | Input variables |       | Lowest point | Bandwidth center point | Number of | Max Gain | Output<br>variable |
|----------|-----------------|-------|--------------|------------------------|-----------|----------|--------------------|
| Polygon  | Thickness       | (THz) | (THz)        | (THz)                  | bands     | (dBi)    | Efficiency         |
| sides    | (m)             |       |              |                        |           |          | (%)                |
| 3        | 0.0002          | 0.564 | 0.6          | 0.718                  | 2         | 10.2     | 81.2               |
| 3        | 0.002           | 0.563 | 0.598        | 0.718                  | 3         | 10.7     | 84.3               |
| 4        | 0.0002          | 0.6   | 0.663        | 0.7                    | 4         | 11.3     | 94.4               |
| 4        | 0.002           | 0.47  | 0.466        | 0.765                  | 4         | 11.3     | 82                 |
| 5        | 0.0002          | 0.63  | 0.605        | 0.685                  | 2         | 10.8     | 82                 |
| 5        | 0.002           | 0.456 | 0.6          | 0.772                  | 5         | 10.9     | 99.5               |
| 6        | 0.0002          | 0.461 | 0.8          | 0.769                  | 2         | 12       | 79                 |
| 6        | 0.002           | 0.451 | 0.595        | 0.774                  | 3         | 10.9     | 79.4               |
| 7        | 0.0002          | 0.475 | 0.632        | 0.762                  | 5         | 11.5     | 75                 |
| 7        | 0.002           | 0.581 | 0.627        | 0.7                    | 3         | 11.8     | 79.6               |
| 8        | 0.0002          | 0.434 | 0.635        | 0.783                  | 7         | 13.3     | 112                |
| 8        | 0.002           | 0.579 | 0.9          | 0.71                   | 1         | 12.9     | 81.8               |

|               |                     | Input va                          | riables                            |              | Glass transition<br>temperature (°C) | γ                        | Coefficient of     | Test      | Output variables       |                             |
|---------------|---------------------|-----------------------------------|------------------------------------|--------------|--------------------------------------|--------------------------|--------------------|-----------|------------------------|-----------------------------|
| Polymer       | Molecular<br>Weight | Nc (Number<br>of C-side<br>chain) | Nb (Number<br>of Benzene<br>rings) | Moistur<br>e |                                      | ہ<br>(electronegativity) | expansion<br>(ppm) | frequency | Dielectric<br>Constant | Dielectric<br>loss<br>(Q×f) |
| PMDA-6FDAM    | 223400              | 1                                 | 1                                  | 0.95%        | 282                                  | 43.6                     | 56.3               | 1MHz      | 2.95                   | 0.0035                      |
| 6FDA-6FDAM    | 135200              | 3                                 | 1                                  | 0.42%        | 261                                  | 67.6                     | 82.5               | 1MHz      | 2.71                   | 0.0028                      |
| BTDA-6FDAM    | 190500              | 1                                 | 1                                  | 0.84%        | 238                                  | 47                       | 37.6               | 1MHz      | 2.91                   | 0.0031                      |
| ODPA-6FDAM    | 167500              | 1                                 | 1                                  | 0.52%        | 242                                  | 47                       | 37.6               | 1MHz      | 2.89                   | 0.0029                      |
| 9FDA-4,4'-ODA | 580000              | 3                                 | 1                                  | 0.35%        | 283.6                                | 59                       | 26.8               | 1MHz      | 2.89                   | 0.0014                      |
| 9FDA-APB      | 230000              | 3                                 | 1                                  | 0.18%        | 259.5                                | 62.4                     | 44.2               | 1MHz      | 2.97                   | 0.0022                      |
| 9FDA-3,4'-ODA | 210000              | 3                                 | 1                                  | 0.40%        | 257.7                                | 59                       | 26.8               | 1MHz      | 2.88                   | 0.0013                      |
| 9FDA-9FAPB    | 280000              | 6                                 | 1                                  | 0.10%        | 245.8                                | 86.4                     | 44.4               | 1MHz      | 2.71                   | 0.0028                      |
| BGTF-HMDA     | 35561               | 2                                 | 0                                  | 0.23%        | 175                                  | 28.56                    | 68.9               | 1MHz      | 3.3                    | 0.0028                      |
| BGTF-DDM      | 20326               | 2                                 | 1                                  | 0.13%        | 170                                  | 26.4                     | 68.2               | 1MHz      | 3.2                    | 0.0021                      |
| DGEBA-HMDA    | 24006               | 2                                 | 0                                  | 0.32%        | 164                                  | 21.76                    | 68.9               | 1MHz      | 3.5                    | 0.0073                      |
| DGEBA-DDM     | 21817               | 2                                 | 1                                  | 0.14%        | 187                                  | 19.6                     | 68.5               | 1MHz      | 3.6                    | 0.0069                      |
| ADEP          | 160295              | 16.8                              | 0                                  | 1.68%        | 372                                  | 141.2                    | 24                 | 200MHz    | 3.07                   | 0.2212                      |
| EP904         | 255994              | 9.6                               | 0                                  | 1.99%        | 428                                  | 48.87                    | 782                | 200MHz    | 3.63                   | 0.0096                      |
| Silixane-ADEP | 250706              | 9.6                               | 0                                  | 2.08%        | 428                                  | 71.4                     | 522                | 200MHz    | 4.54                   | 0.0096                      |
| DGEBA/B10     | 21691               | 7.2                               | 0                                  | 1.08%        | 223                                  | 36.6                     | 68.9               | 10KHz     | 2.943                  | 0.02                        |
| BP/B10        | 172176              | 2                                 | 0                                  | 1.23%        | 253                                  | 36.6                     | 68.5               | 10KHz     | 2.638                  | 0.001                       |
| FBE-FBP       | 213540              | 3                                 | 0                                  | 0.27%        | 424                                  | 34.2                     | 68.7               | 1MHz      | 3.8                    | 0.0036                      |
| FBE-BP        | 200341              | 3                                 | 0                                  | 0.33%        | 429                                  | 22.2                     | 68.9               | 1MHz      | 4.1                    | 0.0038                      |
| BE-FBP        | 188094              | 3                                 | 0                                  | 0.29%        | 438                                  | 22.2                     | 68.9               | 1MHz      | 4.1                    | 0.0045                      |
| BE-BP         | 198362              | 3                                 | 0                                  | 0.37%        | 431                                  | 10.2                     | 68.9               | 1MHz      | 4.2                    | 0.004                       |

Table S6: The synthesis parameters of polymers for antenna design used as the original input data for the machine learning model.

| 6FCDA/TFMB   | 215000 | 4.8 | 0 | 1.20%  | 420 | 77.8   | 6           | 1MHz    | 2.4  | 0.0096 |
|--------------|--------|-----|---|--------|-----|--------|-------------|---------|------|--------|
| 6FCDA/TFMOB  | 217000 | 4.8 | 0 | 0.80%  | 375 | 84.6   | 10          | 1MHz    | 2.8  | 0.2171 |
| 6FCDA/TFEOB  | 205000 | 4.8 | 0 | 0.70%  | 363 | 92.6   | 10          | 1MHz    | 3    | 0.0097 |
| 6FCDA/DFPOB  | 106000 | 4.8 | 0 | 0.10%  | 350 | 147.4  | 109         | 1MHz    | 2.5  | 0.0096 |
| 3FCDA/TFMB   | 396000 | 3   | 0 | 1.90%  | 426 | 65.8   | 20          | 1MHz    | 2.7  | 0.0096 |
| 3FCDA/TFMOB  | 354000 | 3   | 0 |        | 400 | 72.6   | 36          | 1MHz    | 2.6  | 0.0096 |
| 3FCDA/TFEOB  | 203000 | 3   | 0 | 0.80%  | 378 | 80.6   | 40          | 1MHz    | 3.1  | 0.0097 |
| PETI-PMDA    | 108248 | 0   | 0 | 0.45%  | 245 | 26.4   | 68.9        | 1MHz    | 3.17 | 0.24   |
| PETI-PMDA    | 95793  | 0   | 0 | 0.489/ | 222 | 26.4   | <u> </u>    | 1111-   | 2.06 | 0.10   |
| (CH3)4       | 05/05  | 0   | 0 | 0.4870 | 232 | 20.4   | 00.9        | IMITZ   | 5.00 | 0.19   |
| PETI-PMDA    | 76612  | 0   | 0 | 0.560/ | 224 | 26.4   | <u>(8</u> ) |         | 2 02 | 0.21   |
| (CH3)5       | /0012  | 0   | 0 | 0.30%  | 224 | 20.4   | 00.9        | IMITZ   | 2.82 | 0.31   |
| PETI-PMDA    | 62140  | 0   | 0 | 0.40%  | 202 | 26.4   | 68.0        | 1MU-7   | 2 77 | 0.26   |
| (CH3)6       | 02140  | 0   | 0 | 0.4070 | 202 | 20.4   | 00.9        | TIMITIZ | 2.11 | 0.20   |
| Fn1-FDA      | 125000 | 2   | 2 | 0.80%  | 302 | 50.4   | 64.3        | 1MHz    | 2.49 | 0.0123 |
| Fn2-FDA      | 181000 | 6   | 2 | 0.67%  | 311 | 50.4   | 62.9        | 1MHz    | 2.44 | 0.0064 |
| Fn1-ODPA     | 107000 | 0   | 2 | 1.05%  | 296 | 29.8   | 59.6        | 1MHz    | 2.72 | 0.0099 |
| Fn2-ODPA     | 180000 | 4   | 2 | 0.72%  | 322 | 29.8   | 63.7        | 1MHz    | 2.65 | 0.0118 |
| Fn2-Si-ODPA  | 263000 | 4   | 6 | 0.45%  | 292 | 29.8   | 62.7        | 1MHz    | 2.75 | 0.0061 |
| Fn2-Si-FDA   | 256000 | 6   | 6 | 0.19%  | 308 | 50.4   | 62.7        | 1MHz    | 2.63 | 0.0091 |
| Fn2-Si-BPADA | 180000 | 6   | 6 | 0.15%  | 245 | 33.2   | 62.7        | 1MHz    | 2.67 | 0.0024 |
| LCPEI-10     | 33600  | 4.8 | 1 | 0.39%  | 218 | 9.185  | 58.1        | 10GHz   | 3.07 | 0.006  |
| LCPEI-12.5   | 38000  | 4.8 | 1 | 0.55%  | 220 | 9.675  | 68.4        | 10GHz   | 2.91 | 0.008  |
| LCPEI-3F     | 39227  | 4.8 | 1 | 0.44%  | 220 | 10.385 | 75.2        | 10GHz   | 3    | 0.0082 |
| LCPEI-4F     | 18203  | 0   | 1 | 0.55%  | 191 | 10.785 | 78          | 10GHz   | 3.01 | 0.0063 |
| LCPEI-6F     | 47516  | 7.2 | 1 | 0.33%  | 212 | 11.585 | 83.1        | 10GHz   | 2.93 | 0.0076 |
| PEI-6F25AF   | 46200  | 7.2 | 1 | 0.42%  | 238 | 16.36  | 88.9        | 10GHz   | 2.6  | 0.0012 |
| PEI-6Fd25AF  | 32700  | 4.8 | 0 | 0.46%  | 221 | 16.36  | 79.3        | 10GHz   | 2.79 | 0.0077 |
|              | 1      |     |   | I      |     |        |             |         |      |        |

| TABPFL-4,4'- | 116760 | 0       | 2 | 0.710/ | 200 | 12 1 | 62.5 |         | 2.01 | 0.0144 |
|--------------|--------|---------|---|--------|-----|------|------|---------|------|--------|
| ODA          | 110/00 | 0       | Z | 0.71%  | 299 | 43.4 | 62.5 | IMHZ    | 5.01 | 0.0144 |
| TABPFLp-PDA  | 143475 | 0       | 2 | 1.77%  | 324 | 40   | 58.3 | 1MHz    | 3.05 | 0.014  |
| TABPFL-m-TOL | 152826 | 2       | 2 | 0.80%  | 312 | 40   | 57.7 | 1MHz    | 3.07 | 0.0174 |
| TABPFL-TFMB  | 96677  | 2       | 2 | 0.68%  | 309 | 64   | 61.6 | 1MHz    | 2.87 | 0.0161 |
| TABPFL-      | 10/350 | 0       | 2 | 0.60%  | 200 | 40   | 62.4 | 1MH7    | 2.0  | 0.0105 |
| MBCHA        | 104550 | 0       | 2 | 0.0070 | 290 | 40   | 02.4 | TIVITIZ | 2.9  | 0.0105 |
| TABCFL-4,4'- | 113199 | 2       | 2 | 0.830/ | 285 | 12 1 | 62.6 |         | 2.00 | 0.0084 |
| ODA          |        | 15177 2 | 2 | 0.0570 | 285 | 45.4 | 05.0 | TIVITIZ | 5.09 | 0.0084 |
| TABCFL-p-PDA | 152826 | 2       | 2 | 1.15%  | 312 | 40   | 64.5 | 1MHz    | 3.07 | 0.0081 |
| TABCFL-m-TOL | 122600 | 4.8     | 2 | 0.99%  | 309 | 64   | 66.6 | 1MHz    | 2.97 | 0.0065 |
| TABCFL-TMFB  | 150139 | 4.8     | 2 | 0.46%  | 293 | 40   | 64.3 | 1MHz    | 2.87 | 0.0111 |
| TABCFL-      | 95917  | 2       | 2 | 0.85%  | 777 | 40   | 67.2 |         | 200  | 0.0112 |
| MBCHA        | 03047  | 2       | 2 | 0.8570 | 211 | 40   | 07.2 | TIVITIZ | 2.00 | 0.0115 |
| CY-1         | 204056 | 7.2     | 2 | 1.91%  | 323 | 26.4 | 64.2 | 10GHz   | 2.84 | 0.0092 |
| CY-1/6FDABPA | 266270 | 14.4    | 2 | 1.89%  | 293 | 86.4 | 61.8 | 10GHz   | 2.81 | 0.0082 |
| CY-1/Si-B    | 259779 | 14.4    | 6 | 0.73%  | 297 | 45.2 | 62.7 | 10GHz   | 2.95 | 0.0136 |
| CY-1/Si/H    | 237709 | 12      | 6 | 1.71%  | 299 | 24.8 | 62.7 | 10GHz   | 2.81 | 0.0089 |
|              | 1      |         |   |        |     |      |      |         |      |        |



**Figure S1:** Experimental validation of the quality factors ( $Q \times f$ ) of Mg<sub>2</sub>SiO<sub>4</sub> doped with Ba<sub>3</sub>(VO<sub>2</sub>)<sub>4</sub> (**a**) and LiF (**b**) compared to the generated prediction output.