Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Enhanced Dielectric Properties of Alternative NO-Gas-Based SiO₂ Films via Plasma-Enhanced Chemical Vapor Deposition for High-Performance Indium–Gallium–Zinc Oxide Thin-Film Transistors

Se-Ryong Park[†]*a*, Eun-Ha Kim[†]*a*, Yunhui Jang^{*b*}, Youngjin Kang^{*c*}, Yong-Hoon Kim *^{*c*}, Junsin Yi *^{*b*}, and Tae-Jun Ha*^{*a*}

^aDepartment of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.

^bDepartment of Display Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

^cSchool of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Corresponding Author E-mail: taejunha0604@gmail.com, junsin@skku.edu, yhkim76@skku.edu

Fig. S1 Refractive index of NO-based SiO_2 films for different [NO]/[SiH₄] gas ratios in the wavelength range of 600 to 1700 nm.

Fig. S2 Cross-sectional SEM image of the N_2O -gas-based SiO₂ film prepared by PECVD.

Fig. S3 Dielectric breakdown of NO-based SiO_2 films before and after annealing.

Fig. S4 (a) N1s and (b) wide XPS spectra of NO-based SiO $_2$ films as deposited and N $_2$ annealing.

Fig. S5 Hysteresis characteristics of IGZO TFTs with NO-based SiO_2 films as deposited and N_2 annealing.