Supplementary information (SI) for

Tunable magnetism in two-dimensional ferroelectric Janus

NbOXY (X, Y = Cl, Br, I; $X \neq Y$) by hole-doping

Yunlai Zhu^a, Xi Sun^a, Yongjie Zhao^a, Junjie Zhang^a, Ying Zhu^a, Tong Zhu^a, Ke Wang^a, Zuyu Xu^a, Zuheng Wu^{a*}, and Yuehua Dai^{a*}

^a School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.

Corresponding Authors

*E-mail: wuzuheng@ahu.edu.cn (Z.-H. Wu), daiyuehua2013@163.com (Y.-H. Dai)

Table S1 Lattice constants *a*, *b* and *c*(Å), bond length Nb-O and atomic spacing Nb-Nb(Å), bond angles $\angle X$ -Nb-X, $\angle Y$ -Nb-Y and $\angle X$ -Nb-Y(°) of NbOXY monolayer.

Crystal	NbOClBr	NbOClI	NbOBrI
а	3.922	3.925	3.929
b	6.942	7.244	7.383
С	3.898	3.908	4.212
Nb-O1	1.809	1.821	1.823
Nb-O2	2.115	2.106	2.107
Nb-Nb1	3.981	4.280	4.339
Nb-Nb2	2.961	2.964	3.044
$\angle X$ -Nb-X	105.22	105.35	108.02
∠Y-Nb-Y	83.96	84.28	82.69
∠X-Nb-Y	84.84	84.73	84.26

supercent un		none aoping				
ρ	μ_{Total}	μ	E _{NM}	E_{FM}	E _{SP}	$\mathbf{P}_{\mathbf{s}}$
0	0.00	0.00	-102.233	-102.233	0.000	1.959
0.1	0.40	1.00	-100.573	-100.583	24.398	1.845
0.2	0.80	1.00	-98.448	-98.471	28.482	1.925
0.3	1.08	0.90	-95.858	-95.937	65.945	2.003
0.4	1.14	0.71	-92.659	-92.843	115.397	2.069
0.5	1.99	0.99	-88.950	-89.193	121.665	2.190
0.6	1.23	0.52	-84.854	-84.959	43.598	2.219
0.7	0.80	0.29	-80.109	-80.137	9.876	2.321
0.8	0.51	0.16	-74.789	-74.790	0.486	2.314

Table S2 The total magnetic moment μ_{Total} (μ_B), average magnetic moment μ (μ_B /hole), ferromagnetic energy E_{FM} (eV), non-magnetic energy E_{NM} (eV), spin polarization energy E_{SP} (meV/hole), and spontaneous polarization intensity P_s (10⁻¹⁰C/m) of NbOClBr supercell under different hole doping concentrations.

Table S3 The total magnetic moment (μ_B) of NbOClBr monolayer doped with 0.5 u.c.⁻¹ holes under different strains on the x-axis and y-axis.

strain(%)	$\mu_{Total}(x-axis)$	$\mu_{Total}(y-axis)$
-5	0.00	0.00
-4	0.00	0.00
-3	0.00	0.00
-2	0.00	0.00
-1	0.00	0.00
+1	1.94	2.00
+2	1.96	2.00
+3	1.98	2.00
+4	1.99	2.00
+5	1.99	2.00

FIG. S1 The variation of total energy and the temperature during AIMD process at 300 K for a time step of 3 fs for (a) NbOClBr, (b) NbOClI and (c) NbOBrI. Inset shows the corresponding snapshots at the end of 6000 fs, indicating stable structure without phase change.

FIG. S2 Phonon dispersion curves for (a) NbOClBr, (b) NbOClI and (c) NbOBrI.

FIG. S3 Projected density of states for (a) NbOCII and (b) NbOBrI. The Fermi level is set to 0 eV.

FIG. S4 Differential charge density for (a) NbOClBr, (b) NbOClI, and (c) NbOBrI in different polarity states (FE, PE, AFE states from left to right). The accumulation (depletion) of electrons is represented by yellow (blue).

FIG. S5 Polarization curves of (a) NbOClBr, (b) NbOClI and (c) NbOBrI, where the polarization quantum P_q and spontaneous polarization P_s are marked.

FIG. S6 Spin density distribution of NbOClBr monolayer at hole doping concentrations of (a) 0.1 u.c.⁻¹, (b) 0.3 u.c.⁻¹, (c) 0.5 u.c.⁻¹ and (d) 0.7 u.c.⁻¹. Yellow and cyan isosurfaces represent the positive and negative spin densities, respectively. The isosurfaces are 0.001 e/Å³.

FIG. S7 Energy bands of NbOClBr monolayer doped with 0.5 u.c.⁻¹ holes under *x*-axis strain calculated using PBE methods.

FIG. S8 Energy bands of NbOClBr monolayer doped with 0.5 u.c.⁻¹ holes under *y*-axis strain calculated using PBE methods.

Structural data for NbOXY monolayer:

FE phase in NbOClBr:

NbOClBr

1.000	000000	00000	00								
3.9	922098	32617	07835	50	0.0000)000000	0000	000	0.000	000000	0000000
0.0	0.0000000000000000000000000000000000000					5973272	2758	851	0.000	000000	0000000
0.0	000000	0000	00000)0	0.0000	000000	0000	000	24.208	499908	4000003
Nb	Cl	0	Br								
2	2		2	2							
Direct											
0.9967	717943	5970	195	0.213	3281466	501013	03	0.4999	9996884	448947	,
0.9967	717943	5970	195	0.786	5718533	3989869	97	0.5000	0003115	551053	i
0.9543	384448	84170	307	0.000	002365	5882743	30	0.5805	5164770	150597	,
0.9543	384448	84170	307	0.999	997706	511725:	58	0.4194	1834449	849409	ı
0.4577	71287	1969	339	0.221	108902	2103004	48	0.4999	986185	305332	!
0.4577	71287	1969	339	0.778	891148	3896995	58	0.5000	015004	694660)
0.9462	286413	7890	179	0.500	001710	0850504	48	0.4256	6629614	448642	!
0.9462	286413	7890	179	0.499	998391	149496	65	0.5743	371565	551314	Ļ

AFE phase in NbOClBr:

NbOClBr

```
1.00000000000000
```

3.9	22098	8159	800000	0	0.00000000000000000	0.0000000000000000000000000000000000000
0.0	00000	0000	000000	0	6.9416971206999998	0.000000000000000000
0.0	00000	0000	000000	0	0.000000000000000000	24.2084999084000003
Nb	Cl	0	Br			
2	2		2	2		

Direct

0.9188200239999986	0.2132814679999981	0.4999997019999967
0.996717930000026	0.7867185469999995	0.5000002980000033
0.9543844459999988	0.0000023659999968	0.5805164579999982
0.9543844459999988	0.9999977350000009	0.4194834529999980
0.4577713010000011	0.2211088990000007	0.4999986289999967
0.4577713010000011	0.7788911459999994	0.5000014900000025
0.9462864400000015	0.5000017289999974	0.4256629650000008
0.9462864400000015	0.4999983909999983	0.5743371840000009

PE phase in NbOClBr:

NbOClBr

3.9220981598000000	0.00000000000000000	0.0000000000000000000000000000000000000
0.0000000000000000	6.9416971206999998	0.0000000000000000000000000000000000000
0.00000000000000000	0.000000000000000000	24.2084999084000003

```
Nb Cl O Br
```

```
2 2 2 2
```

Direct

0.9577699900000027	0.2211090030000022	0.4999997019999967
0.9577699900000027	0.7788910270000002	0.5000002980000033
0.9577699900000027	0.0000023659999968	0.5805164579999982
0.9577699900000027	0.9999977350000009	0.4194834529999980
0.4577713010000011	0.2211088990000007	0.4999986289999967
0.4577713010000011	0.7788911459999994	0.5000014900000025
0.9577699900000027	0.5000017289999974	0.4256629650000008
0.9577699900000027	0.4999983909999983	0.574337184000000

```
FE phase in NbOClI:
```

```
NbOClI
```

1.000000000000000		
3.92541363774498	20 0.0000000000	0.0000000000000000000000000000000000000
0.0000000000000000	00 7.24411278430	07749 0.0000000000000000
0.0000000000000000	00 0.0000000000	00000 24.2084999084000003
Nb O I Cl		
2 2 2	2	
Direct		
0.9940969284959422	0.2045691271266463	0.4999994191609858

Di

0.9940969284959422	0.2045691271266463	0.4999994191609858
0.9940969284959422	0.7954308728733537	0.5000000151609854
0.4577348740654301	0.2126003912021091	0.4999997205267945
0.4577348740654301	0.7873996387978934	0.5000025815267932
0.9488463300085215	0.5000017289999974	0.4197347004056908
0.9487568410560954	0.4999983909999983	0.5802663018404246
0.9545254819317179	0.9999977350000009	0.4192777538005643
0.9545279768809252	0.00000236599999968	0.5807196275777571

AFE phase in NbOClI:

NbOClI

1.000000000000000		
3.92541360860000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.00000000000000000	00 7.2441129683999	0.0000000000000000000000000000000000000
0.00000000000000000	0.0000000000000000000000000000000000000	0000 24.2084999084000003
Nb O I Cl		
2 2 2	2	
Direct		
0.9213630615040602	0.2045691309999995	0.4999994340000029
0.9577299950000011	0.7954308990000030	0.5000000000000000
0.4577348830000005	0.2126003950000026	0.4999997319999991
0.4577348830000005	0.7873996499999976	0.5000025630000025
0.9488463400000029	0.5000017289999974	0.4197346870000018

0.9487568139999993	0.4999983909999983	0.5802662970000014
0.9545254709999966	0.9999977350000009	0.4192777570000032
0.9545279740000012	0.0000023659999968	0.5807196499999989

PE phase in NbOClI:

NbOClI

1.000	000000	000	000			
3.9	925413	608	60000	00	0.00000000000000000	0.00000000000000000
0.0	000000	000	00000	00	7.2441129683999996	0.00000000000000000
0.0	000000	000	00000	00	0.000000000000000000	24.2084999084000003
Nb	0	Ι	Cl			
2	2		2	2		

Direct

0.9577299950000011	0.2045691309999995	0.4999994340000029
0.9577299950000011	0.7954308990000030	0.50000000000000000
0.4577348830000005	0.2126003950000026	0.4999997319999991
0.4577348830000005	0.7873996499999976	0.5000025630000025
0.948846340000029	0.5000017289999974	0.4197346870000018
0.9487568139999993	0.4999983909999983	0.5802662970000014
0.9545254709999966	0.9999977350000009	0.4192777570000032
0.9545279740000012	0.0000023659999968	0.5807196499999989

FE phase in NbOBrI:

NbOBrI

1.000	000000	00000			
3.9	290389	8812308	385	0.000000000000000000	0.000000000000000000
0.0	000000	000000	000	7.3827771862123113	0.000000000000000000
0.0	000000	000000	000	0.00000000000000000	24.2084999084000003
Nb	0	Br I			
2	2	2	2		

Direct

0.9938757033300050	0.2061374712539461	0.5000005089489505
0.9938757033300050	0.7938625737460541	0.5000011049489501
0.4576867005947420	0.2123729252989150	0.4999988444142929
0.4576867005947420	0.7876271347010828	0.5000017054142987
0.9544812361736632	0.0000023659999968	0.5869981146756871
0.9544462880518054	0.9999977350000009	0.4130015245910883
0.9491155616483482	0.4999983909999983	0.5791169594603787
0.9491522802766852	0.5000017289999974	0.4208813565463529

AFE phase in NbOBrI:

NbOBrI

 1.000000000000

 3.9290390015000001
 0.0000000000000000

0.000000000000000000

0.0	000000	00000	0000	0	7.3827	772140	9999	99	0.00	00000)00000	00000
0.0	000000	00000	0000	0	0.0000	000000	0000	00	24.20	84999	908400	00003
Nb	0	Br	Ι									
2	2	2	2	2								
Direct												
0.993	8687089	99999	74	0.206	131980	000002	1 0	.4999	99731	99999	991	
0.921	5210079	99999	91	0.793	868064	999998	1 0	.5000	00358	0000	012	
0.457	6941130	00000	23	0.212	3623339	999998	0 0	.4999	98509	99999	975	

0.4576941130000023	0.7876377110000021	0.5000013710000033
0.9544557330000032	0.00000236599999968	0.5869972110000035
0.9544513820000020	0.9999977350000009	0.4130029080000028
0.9491414430000020	0.4999983909999983	0.5791131260000029
0.9491459730000003	0.5000017289999974	0.4208868739999971

PE phase in NbOBrI:

NbOBrI

1.000000000000000		
3.929039001500000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.0000000000000000000000000000000000000	00 7.3827772140999	9999 0.0000000000000000
0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0000 24.2084999084000003
Nb O Br I		
2 2 2	2	
Direct		
0.9576900010000031	0.2061319800000021	0.4999997319999991
0.9576900010000031	0.7938680649999981	0.5000003580000012
0.4576941130000023	0.2123623339999980	0.4999985099999975
0.4576941130000023	0.7876377110000021	0.5000013710000033
0.9544557330000032	0.0000023659999968	0.5869972110000035
0.9544513820000020	0.9999977350000009	0.4130029080000028
0.9491414430000020	0.4999983909999983	0.5791131260000029
0.9491459730000003	0.50000172899999974	0.4208868739999971