Supplementary Materials for

Strong polarization in paraelectric tungsten-bronze systems via bonding engineering

Yiying Chen, Junlei Qi, Bin Wei, Ce-Wen Nan, and Yuanhua-Lin*

Fig. S1 Relative bulk density of x=0, 0.25 and 0.5 samples.

Fig. S2 Rietveld refinement figure of x=0, (a) 0.25 (b) and 0.5 (c) samples.

Fig. S3 SEM image (a) and energy dispersive spectroscopy (EDS) mapping (b-e) of x=0.5

sample.

(a)	Point A +	(b)	
	7.00	0 2 4 满里程 1820 cts 光标: 0	6 8 10 12 14 16 18 20 000 keV
(c)	7μm		
	Element	Point A	Point B
	Ва	3.48	4.68
	Nd	3.68	5.01
	Bi	3.51	4.73
	Ti	12.73	17.84
	0	76.59	67.75

Fig. S4 SEM image (a), spectrum (b) and (c) atomic percentage of elements of point A and B

of the x=0.5 sample.

Fig. S5 Temperature dependence of permittivity and loss tangent at given frequencies of the

x=0 and 0.5 samples.

Fig. S6 P-E loops of the (a)x=0, 0.25 and 0.5 samples measured at 100 kV/cm and 100Hz, and (b) Electric field-dependent effective permittivity of these three samples.

Fig. S7 DC resistance of x=0, 0.25 and 0.5 samples.

Fig. S8 UV-vis spectra of x=0, 0.25 and 0.5 samples.