Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

High-temperature energy storage capability of flexible polyimide with the

fluorinated pendant group

Jiayang Han#, Fuxing Zhai#, Dingyu Zheng, Lixin Xu*, Huijian Ye*

College of Materials Science and Engineering, Zhejiang University of Technology,

Hangzhou 310014, China

[#] These authors are contributed to this work equally.

E-mail: huy19@zjut.edu.cn (H. Ye), gcsxlx@zjut.edu.cn (L. Xu)

Polyimides	Polyamide acid	TFPH	MPD	LPDA
PI-0	PAA-0	0	100	100
PI-25	PAA-25	25	75	100
PI-50	PAA-50	50	50	100
PI-75	PAA-75	75	25	100
PI-100	PAA-100	100	0	100

Table S1. The feeding ratio of dianhydride to diamine.

Figure S1. The structural characterizations of monomers from ¹H NMR spectra: (a) TFPO and (b) TFPH.

Figure S2. XRD patterns of PI films.

Sample	$M_{\rm n}({\rm kD})$	M _w (kD)	$M_{\rm z}({\rm kD})$	$M_{ m w}/M_{ m n}$
PAA-0	27.5	35.2	98.3	1.28
PAA-25	17.1	24.5	38.4	1.43
PAA-50	18.0	26,1	43.9	1.45
PAA-75	18.0	26.9	40.7	1.49
PAA-100	14.2	20.9	33.3	1.48

 Table S2. The macromolecular weights and polydispersity indexes of PAA samples

 based on the GPC results.

Figure S3. DMA curves of PI films: (a) storage modulus and (b) loss tangent.

Figure S4. Tauc's diagram of PI films: (a) PI-0, (b) PI-25, (c) PI-50, (d) PI-75, and (e) PI-100. The corresponding bandgap values are labelled inset.

Figure S5. The hysteresis *P-E* loops of PI films versus the applied fields at room temperature: (a) PI-0, (b) PI-25, (c) PI-50, (d) PI-75, and (e) PI-100.

Figure S6. The hysteresis *P-E* loops of PI films versus the applied fields at 150 °C: (a) PI-0, (b) PI-25, (c) PI-50, (d) PI-75, and (e) PI-100.

Figure S7. The polarization values of PI films at 25 °C: (a) P_{max} and (b) $P_{\text{r.}}$

Figure S8. The polarization values of PI films at 150 °C: (a) P_{max} and (b) $P_{\text{r.}}$

Figure S9. Average breakdown field strength of PI film with error bars under different testing temperatures: (a) 25°C, and (b) 150°C.

Figure S10. The variations of P_{max} and P_{r} values versus cycle number for PI-100 under an applied electric field of 200 MV m⁻¹ at 150 °C.

Figure S11. The leakage current data and fitting curves of PI-0 and PI-100 at 200 MV

 $m^{\text{-1}}$ and 150 °C. The solid curves fit to hyperbolic sine.