Supporting Information

Diversifying Peripheral Aromatic Units of Pyrrolo[3,2-*b*]pyrrole-Containing Conjugated Polymers and the Resulting Optoelectronic Properties

Graham S. Collier^{a,b*}, Julien T. Layton,^b Perry Skiouris,^a Kenneth-John J. Bell,^b Ethan W. Wagner,^b Vanessa Phan,^a Sarah G. Fraser^c and Aimée L. Tomlinson^c

^aCenter for Optoelectronic Materials and Devices, School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA

^bDepartment of Chemistry and Biochemistry, Kennesaw State University, Kennesaw GA, 30144, USA

^cDepartment of Chemistry and Biochemistry, University of North Georgia, Dahlonega, GA, 30597, USA

Materials and Methods

All materials used in synthetic protocols were purchased from commercial sources and used as received unless otherwise stated. Anhydrous acetonitrile (ACN) and toluene were obtained from a Pure Process Technology GC-SPS-7 Glass Contour 800L Solvent Purification System stored under argon (Ar) and degassed with Ar for 15 min. before use. All column chromatography purifications used 60 Å silica gel (200-400 mesh). ¹H NMR and ¹³C NMR spectra were collected on a Bruker Advance III HD 400 MHz NMR spectrometer with nominal concentrations of 5 mg/mL in CDCl₃. Peaks are referenced to the residual CHCl₃ peak (¹H: δ = 7.26 ppm; ¹³C: δ = 77.23 ppm). Polymer molecular weights were estimated via size exclusion chromatography (SEC) using a Tosoh EcoSEC HLC-8320 or an Agilent 1260 Infinity II system operated at 35 °C while using chloroform as the eluent. Polymer solutions (~5 mg/mL in CHCl₃) were prepared and filtered through a PTFE 0.45 µm filter prior to injection. Thermogravimetric analyses (TGA) were performed using a TA Instruments Discovery TGA550 TGA thermogravimetric analyzer in platinum pans under N₂. A scan used a ramp from room temperature to 800 °C at a heating rate of

10 °C/min. Differential scanning calorimetry (DSC) measurements were made using a TA instruments Discovery DSC250 DSC with a heat-cool-heat cycle from -25 °C to 250 °C at a heating rate of 5 °C/min. Optical absorbance spectra of solutions and films were acquired using a Varian Cary 5000 Scan dual-beam UV–vis–near-IR spectrophotometer. Cyclic voltammetry (CV) measurements were performed with a CH Instruments Electrochemical workstation (CHI660D), using a glassy carbon electrode as the working electrode, an Ag/AgCl reference electrode (calibrated versus the Fc/Fc⁺ redox couple, $E_{1/2} = 46$ mV), and a Pt flag as the counter electrode. A 50 mV/s scan rate was used for all electrochemical measurements. An electrolyte solution of 0.5 M tetrabutylammonium hexafluorophosphate (TBAPF₆, 98%) in anhydrous ACN was used for electrochemical measurements. Glass slides used for film studies were cleaned first by sonicating for ~5 min in acetone followed by isopropanol (IPA) and rinsed with the respective solvent before being dried with compressed air. Polymer films were deposited onto the glass slides from ~5-20 mg/mL CHCl₃ solutions using an Ossila Spin Coater at 1800 rpm for 30 s. There are no hidden risks or hazards to declare for this work.

Synthesis and Characterization

General Procedure for Synthesizing Ether-Functionalized Anilines from Acetaminophen

Scheme S1. General synthesis of ether-functionalized acetaminophen with the corresponding alkyl bromides.

All ether-functionalized anilines were synthesized following a literature procedure reported by adopted by our group.^{1,2} Acetaminophen (8.00 g, 53.0 mmol), potassium iodide (KI) (0.439 g, 3.00 mmol), and K₂CO₃ (18.3 g, 133 mmol) were added to a 250 mL three-neck round bottom flask equipped with a condenser and magnetic stir bar. The flask was sealed with three rubber septa and rendered inert via 3 vacuum/refill cycles with Ar. 2-Butanone (132 mL) was added to the flask for a reaction concentration of 1.2 M with respect to the acetaminophen and alkyl bromide. The mixture was lowered into a preheated oil bath set to 90 °C for 30 minutes. After heating for 30 min., 7-(bromomethyl)pentadecane (106 mmol, 2.0 eq) was added to the flask via syringe and the reaction was set to run overnight ($\sim 16-20$ h). The following day, the reaction was removed from the oil bath and cooled to room temperature. The reaction was suspended in 150 mL of water before extraction with ethyl acetate (3×30 mL). The combined ethyl acetate layers were washed with water (3×100 mL), dried over anhydrous Na₂SO₄, and filtered. The organic phase was concentrated via rotary evaporation to yield an amber-yellow oil. The crude product was dried under vacuum overnight and used in the subsequent procedure without further purification.

Scheme S2. Deprotection reaction for synthesizing ether-functionalized anilines via acetyl-group hydrolysis.

The ether-functionalized acetaminophen (20 mmol) was transferred into a 100 mL round bottom flask equipped with a magnetic stir bar and dissolved in 90% ethanol (48 mL). Concentrated HCl (18 mL) was then added to the reaction mixture dropwise and a condenser was attached. The reaction was lowered into a preheated oil bath set to 90 °C and the reaction was allowed to run overnight (~16-20 h). After stirring overnight, the reaction was removed from heat and cooled to room temperature. The reaction mixture was transferred to a beaker and diluted with ~ 100 mL of water. Aqueous NaOH (1.0 M) was added to the mixture until pH paper indicated the solution was neutralized. The desired product was extracted with DCM (3×50 mL), dried over anhydrous Na₂SO₄, and filtered. The organic phase was concentrated via rotary evaporation to yield an amber oil. The crude product was dried under vacuum overnight and used in subsequent procedures without further purification.

4-((2-hexyldecyl)oxy)-aniline: 4.25 g (64%). ¹H NMR (400 MHz, CDCl₃), δ= 0.90 (t, 6H), 1.30 (br m, 20H), 1.44 (m, 4H), 1.76 (m, 1H), 3.42 (br s, 2H), 3.77 (d, 2H), 6.67 (d, 2H), 6.76 (d, 2H). ¹³C NMR (400 MHz, CDCl₃), δ: 14.12, 22.69, 26.83, 26.86, 29.34, 29.61, 29.72, 31.40, 31.88, 31.92, 38.08, 71.75, 115.71, 116.39, 139.72, 152.70. Structural characterization matched previously reported data.¹

Synthesis of Functionalized DHPP Monomers via an Fe(III)-Catalyzed Multicomponent Reaction

Scheme S3. General synthesis of the brominated DHPP monomers via an Fe(III)-catalyzed multicomponent reaction.

The synthetic protocol for DHPPs was adopted from previous work reported by our group. Briefly, 4-((2-hexyldecyl)oxy)-aniline (8 mmol) and the corresponding aldehyde (8 mmol) were added to a solution of toluene (6 mL) and glacial acetic acid (6 mL) inside a 25 mL round bottom flask equipped with a magnetic stir bar. The reaction mixture was stirred for 1 h in an oil bath set to 50 °C. Once the initial heating time was completed, $Fe(ClO_4)_3 \cdot xH_2O$ (0.085 g) was added to the reaction flask, followed by 2,3-butanedione (0.35 mL, 4.00 mmol). After these additions, the reaction was allowed to stir at 50 °C overnight. The next day the reaction was removed from heat and allowed to cool to room temperature. Each monomer required slightly different purification protocols and are reported below. Following purification via washing or recrystallization, the solids were collected in a vial and dried under vacuum overnight. After structural analysis, each monomer was confirmed to be the desired product.

2,5-bis(4-bromophenyl)-1,4-bis(4-((2-hexyldecyl)oxy)phenyl)-1,4-dihydropyrrolo[3,2-

b]pyrrole (*m*-Ph₂DHPP): The reaction precipitate was collected via vacuum filtration and washed with cold MeOH and acetone until a pale-yellow solid remained on the filter paper. Yield: 1.74 g (47%). ¹H NMR (400 MHz, CDCl₃), δ : 0.93 (br, 12H), 1.34 (br, 48 H), 1.81 (m, 2H), 3.87 (d, 4H), 6.34 (s, 2H), 6.93 (d, 4H), 7.10 (d, 4H), 7.19 (d, 4H), 7.34 (d, 4H). ¹³C NMR (400 MHz, CDCl₃), δ : 14.12, 22.69, 26.87, 29.34, 29.61, 29.70, 30.03, 31.40, 31.87, 31.92, 38.03, 71.26, 93.86, 115.06, 119.95, 126.54, 129.44, 131.27, 132.09, 132.52, 132.60, 134.94, 157.65. Anal. calc'd for C₆₁H₈₂Br₂N₂O₂: C 70.78, H 7.98, Br 15.44, N 2.71, O 3.09. Found: C 71.17 H 8.07, N 2.70.

2,5-bis(5-bromothiophen-2-yl)-1,4-bis(4-((2-hexyldecyl)oxy)phenyl)-1,4-dihydropyrrolo[3,2*b*]pyrrole (*m*-Th₂DHPP): After cooling to room temperature, the crude reaction mixture was precipitated dropwise into chilled MeOH. The precipitate was a brown sludge that was collected via vacuum filtration and washed with cold MeOH and acetone until a pale-yellow solid remained on the filter paper. Yield: 168 mg (15%). ¹H NMR (400 MHz, CDCl₃), δ : 0.92 (br, 10H), 1.32 (br, 50 H), 1.83 (q, 2H), 3.90 (d, 4H), 6.23 (s, 2H), 6.39 (d, 2H), 6.81 (d, 2H), 6.98 (dt, 4H, *J* = 8.0, 2.0 Hz), 7.28 (m, 4H, *J* = 8.0 Hz). ¹³C NMR (400 MHz, CDCl₃), δ : 14.14, 22.71, 26.88, 26.91, 29.36, 29.62, 29.71, 30.05, 31.41, 31.88, 31.94, 38.04, 71.32, 93.08, 115.09, 124.43, 127.72, 129.98, 131.57, 158.56. Anal. calc'd for C₅₈H₈₀Br₂N₂O₂S₂: C 65.65, H 7.60, Br 15.06, N 2.64, O 3.02, S 6.04. Found: C 65.55 H 7.57, N 2.57, S 6.20.

7,7'-(1,4-bis(4-((2-hexyldecyl)oxy)phenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole-2,5-diyl)bis(4-

bromobenzo[*c*][1,2,5]thiadiazole) (*m*-BTD₂DHPP): After cooling to room temperature, the crude reaction mixture was precipitated dropwise into chilled MeOH. The precipitate was a dark sludge that was collected via vacuum filtration and washed with cold MeOH and acetone to remove a significant portion of unknown impurities. The solid was then transferred into an Erlenmeyer flask and recrystallized from ethyl acetate. The recrystallized product was collected via filtration and washed with chilled ethyl acetate to yield a dark-red solid. Yield: 278 mg (12%). ¹H NMR (400 MHz, CDCl₃), δ : 0.88 (br, 10H), 1.29 (br, 50H), 1.76 (t, 2H), 3.82 (d, 4H), 6.88 (dt, 4H, *J* = 8.0, 2.0 Hz), 6.98 (d, 2H, *J* = 8.0 Hz), 7.01 (s, 2H), 7.23 (dt, 4H, *J* = 8.0, 2.0 Hz), 7.61 (d, 2H, *J* = 8.0 Hz). ¹³C NMR (400 MHz, CDCl₃), δ : 14.13, 22.69, 26.86, 26.90, 29.34, 29.61, 29.70, 30.03, 31.39, 31.87, 31.91, 38.02, 71.29, 77.22, 98.35, 110.86, 115.21, 126.59, 127.77, 131.83, 134.06,

152.85, 157.81. Anal. calc'd for C₆₁H₈₂Br₂N₂O₂: C 63.91, H 6.92, Br 15.44, N 7.21, O 3.09, S 5.50. Found: C 63.27 H 6.70, N 7.12, S 5.53.

General Polymerization Protocol

Scheme S4. Generic synthetic pathway for Suzuki polycondensations that produce DHPP copolymers.

The dihalogenated DHPP (1.0 molar equiv.), bis(pinacolato)diboron (1 molar equiv.), and 2 mol% of Pd(PPh₃)Cl₂ were added to a 10 mL, one-neck round bottom flask along with a Teflon stir bar. One drop of Aliquat 336 was subsequently added to the flask. A condenser was connected to the round bottom flask and sealed with a rubber septum. The flask was rendered inert via $3\times$ vacuum/refill cycles with Ar before adding 2M K₂CO₃ (aq) and toluene in a 4:1 ratio via syringe. The reaction mixture was placed in an oil bath set to 110 °C and stirred overnight. The next day, the reaction mixture was cooled to room temperature before precipitation into ~ 200 mL of MeOH while vigorously stirring. The precipitate was collected in a Soxhlet thimble and then washed with MeOH and acetone to remove impurities and low molecular weight oligomers before extracting the desired polymer from the Soxhlet thimble with chloroform. The product was concentrated via

rotary evaporation and precipitated into ~ 200 mL of MeOH while stirring. The precipitate was allowed to stir for 1 h before collecting the product via vacuum filtration. The polymer was placed into a vial and allowed to dry under vacuum overnight. All three polymers were confirmed to be the expected products after structural analysis.

Ph₂DHPP: Yellow Solid. Yield: 80 mg (70%) ¹H NMR (400 MHz, CDCl₃), δ : 0.88 (br, 17H), 1.29 (t, 60H), 1.77 (t, 2H), 3.83 (d, 4H), 6.38 (s, 2H), 6.89 (m, 4H), 7.23 (m, 8H), 7.46 (m, 4H). Anal. calc'd for C₆₂H₈₆N₂O₂: C 83.54; H 9.73; N 3.14 Found: C 82.65; H 9.56; N 3.21. M_n = 12.0 kg/mol M_w/M_n = 1.6.

Th₂DHPP: Red Solid. Yield: 105.5 mg (77%) ¹H NMR (400 MHz, CDCl₃), δ : 0.88 (br, 15H), 1.30 (br, 80H), 1.81 (t, 2H), 3.86 (d, 4H), 6.24 (s, 2H), 6.37 (d, 2H), 6.77 (br, 2H), 6.95 (dt, 4H, J = 8.7, 3.0 Hz), 7.29 (m, 4H). Anal. calc'd for C₅₈H₈₂N₂O₂S₂: C 77.11; H 9.15; N 3.10; S 7.10 Found: C 76.65; H 8.88; N 3.00; S 7.14. M_n = 14.0 kg/mol M_w/M_n = 2.1.

BTD₂DHPP: Dark-Blue Solid. Yield: 48.5 mg (53%). *Yields were lower because an insoluble blue material remained in the Soxhlet thimble.* ¹H NMR (400 MHz, CDCl₃), δ : 0.87 (br, 15H), 1.28 (br, 57H), 1.78 (br, 2H), 3.84 (br, 4H), 6.90 (m, 4H), 7.14 (br, 2H), 7.34 (m, 4H), 8.26 (br, 2H). Anal. calc'd for C₆₂H₈₂N₆O₂S₂: C 73.91; H 8.20; N 8.34; S 6.36 Found: C 74.04; H 8.08; N 8.18; S 6.19. Product did not possess adequate solubility for molecular weight estimation.

Figure S2. ¹³C NMR (400 MHz, 25 °C, CDCl₃) of HxDecAniline.

Figure S3. ¹H NMR (400 MHz, 25 °C, CDCl₃) of *m*-Ph₂DHPP.

Figure S6. ¹³C NMR (400 MHz, 25 °C, CDCl₃) of *m*-Th₂DHPP.

Figure S8. ¹³C NMR (400 MHz, 25 °C, CDCl₃) of *m*-BTD₂DHPP.

Figure S10. ¹H NMR (400 MHz, 25 °C, CDCl₃) of Th₂DHPP.

Figure S11. ¹H NMR (400 MHz, 25 °C, CDCl₃) of BTD₂DHPP.

Figure S12. SEC elugram for Ph_2DHPP using $CHCl_3$ as the eluent at 35 °C with a flow rate of 1 mL/min.

Figure S13. SEC elugram for Th_2DHPP using $CHCl_3$ as the eluent at 35 °C with a flow rate of 1 mL/min.

$$SC = 35 \frac{NSS}{NSS_{max}} + 25 \frac{log^{(RY)}}{log^{(C)}(RY_{max})} + 15 \frac{NUO}{NUO_{max}} + 15 \frac{NCC}{NCC_{max}} + 10 \frac{NHC}{NHC_{max}}$$
(S1)

The 5 variables in Equation 1 are defined as the number of synthetic steps (NSS), the reciprocal yield of monomers (RY), the number of operations required for purification of monomers (NUO), the number of column chromatography purifications (NCC), and the number of hazardous materials used (NHC), all of which are assigned a weighted value based on the influence each step has on potential cost implications.

Polymer	NSS	RY	NUO	NCC	NHC	SC
Ph ₂ DHPP	4	2.13	3	2	2	14.5
Th ₂ DHPP	4	6.7	3	2	2	20.9
BTD ₂ DHPP	4	8.33	4	2	2	22.5

Tables S1. Synthetic complexity analysis of DHPP homopolymers.

Figure S14. UV-vis absorbance spectra of solutions containing m-BTD₂DHPP (black) and BTD₂DHPP (red) to demonstrate the extended effective conjugation length upon polymerization of m-BTD₂DHPP.

Figure S15. UV-vis absorbance spectra of Ph_2DHPP as a pristine film (black) and after annealing at 100 °C for the time identified in the legend. The lack of change demonstrates the thermal stability of the aggregates in the solid state.

Figure S16. Thermal gravimetric analysis (TGA) traces for Ph2DHPP, Th2DHPP, and BTD2DHPP when heating from 25 °C - 800 °C with a 10 °C/min. heating rate.

Figure S17. Differential scanning calorimetry (DSC) traces from the second heating cycle for Ph_2DHPP , Th_2DHPP , and BTD_2DHPP .

Figure S18. UV-vis absorbance spectra of BTD_2DHPP films after varying exposure to electrochemical processes.

Figure S19. Full CV traces of a BTD₂DHPP sweeping towards reductive potentials first showing the improved electrochemical stability.

Figure S20. Oxidative CV traces of a BTD_2DHPP film showing the rapid depletion is redox response without the accompanying reductive sweep.

Figure S21. Absorbance as a function of electrochemical potential for a P3HT film by varying potentials in a $0.5 \text{ M TBAPF}_6/\text{ACN}$ electrolyte.

Table of Contents

DFT/TDDFT Gaussian Setups	20
Optimization Frequency	20
TD-SCF	21
Ph ₂ DHPP Neutral	21

Cartesian Coordinates21
Energy Levels
Lowest Excited States
Geometric Images
Simulated UV-Vis Spectra
Ph ₂ DHPP Radical Cation
Cartesian Coordinates
Energy Levels
Lowest Excited States
Geometric Images
Simulated UV-Vis Spectra
Th ₂ DHPP Neutral
Cartesian Coordinates
Energy Levels
Lowest Excited States
Geometric Images42
Simulated UV-Vis Spectra43
Th ₂ DHPP Radical Cation
Cartesian Coordinates
Energy Levels
Lowest Excited States
Geometric Images
Simulated UV-Vis Spectra49
BTD ₂ DHPP Neutral
Cartesian Coordinates
Energy Levels
Lowest Excited States
Geometric Images
Simulated UV-Vis Spectra

DFT/TDDFT Gaussian Setups

Optimization Frequency

#opt=(calc,tight) freq geom=connectivity mpw3pbe sv charge = 0 multiplicity = 1 (neutral)
#opt=(calc,tight) freq geom=connectivity mpw3pbe sv charge = 1 multiplicity = 2 (radical+)

TD-SCF

td=(nstates=15) pvdz geom=connectivity mpw3pbe sv charge = 0 multiplicity = 1 (neutral) td=(nstates=15) pvdz geom=connectivity mpw3pbe sv charge = 1 multiplicity = 2 (radical+)

Ph₂DHPP Neutral

Cartesian Coordinates

С	9.3246 0.8957 0.02715
С	8.42831 1.88399 0.45883
С	7.1262 1.36455 0.23262
С	7.23795 0.08787 -0.33341
С	5.03923 0.5567 -0.12739
С	5.93622 -0.4316 -0.55965
Н	8.71324 2.8676 0.82551
Н	5.65151 -1.41537 -0.92607
N	5.77356 1.66749 0.35371
N	8.59086 -0.21505 -0.45414
С	5.27243 2.94479 0.73564
С	5.69258 3.52646 1.94752
С	4.3871 3.6497 -0.09177
С	5.23285 4.78932 2.3218
Н	6.37791 2.97554 2.59762
С	3.90644 4.9111 0.28763
Н	4.07026 3.20978 -1.0405
С	4.33213 5.48608 1.49622
Н	5.54909 5.25584 3.25758
Н	3.21284 5.43431 -0.37377
С	9.09201 -1.49062 -0.84123
С	9.98409 -2.19558 -0.02119
С	8.66522 -2.07062 -2.05167
С	10.46475 -3.45524 -0.40648
Н	10.30627 -1.75715 0.92641
С	9.12491 -3.33176 -2.43161
Н	7.97487 -1.51963 -2.69634
С	10.03235 -4.0285 -1.61346
Н	11.16388 -3.97844 0.24908
Н	8.80363 -3.79672 -3.36644
0	3.92385 6.72392 1.95409
0	10.44008 -5.26462 -2.07669
С	3.0082 7.50696 1.16977
Н	2.84218 8.4319 1.74165
Н	3.43565 7.75946 0.17999
Н	2.04254 6.98301 1.03097

С	11.3645 -6.0462 -1.30149
Н	10.94583 -6.30243 -0.30887
Н	11.52914 -6.96932 -1.87671
Н	12.32946 -5.51924 -1.16921
С	3.57808 0.45548 -0.08285
С	2.80905 0.97662 0.98304
С	2.88889 -0.23483 -1.10651
С	1.42138 0.81905 1.01511
Н	3.30639 1.48537 1.81278
С	1.50231 -0.39734 -1.06635
Н	3.45339 -0.62462 -1.95903
С	0.73134 0.12971 -0.00661
Н	0.86529 1.20776 1.87369
Н	1.00363 -0.91081 -1.89405
С	10.78809 0.99687 -0.01681
С	11.47261 1.66901 1.02241
С	11.54841 0.49104 -1.09669
С	12.86251 1.83199 0.98297
Н	10.90213 2.05025 1.8749
С	12.93953 0.64681 -1.12813
Н	11.04364 -0.00949 -1.92708
С	13.60495 1.31723 -0.09055
Н	13.36951 2.35508 1.80006
Н	13.5066 0.25083 -1.97658
Н	14.69205 1.43913 -0.11953
С	-0.74097 -0.03499 0.03292
С	-1.57667 0.95623 0.59327
С	-1.36591 -1.1895 -0.48788
С	-2.96335 0.79569 0.6402
Н	-1.13433 1.87693 0.98588
С	-2.75322 -1.35001 -0.45118
Н	-0.75287 -1.98817 -0.91636
С	-3.58731 -0.36126 0.11941
Н	-3.58187 1.5746 1.09651
Н	-3.19607 -2.25172 -0.88166
С	-5.04874 -0.47145 0.1355
С	-5.97092 0.56342 -0.08144
Ν	-5.75193 -1.68996 0.29394
С	-7.2562 -0.03914 -0.0577
Н	-5.70984 1.59835 -0.29087
С	-7.1095 -1.4149 0.16241
С	-5.22795 -2.95481 0.68686
Ν	-8.61409 0.23553 -0.18978
С	-8.39503 -2.0177 0.18553

С	-4.39397 -3.07416 1.80734
С	-5.57203 -4.11031 -0.0411
С	-9.31648 -0.98336 -0.03208
С	-9.13887 1.50071 -0.57942
Н	-8.65647 -3.05276 0.39395
С	-3.88768 -4.32428 2.19055
Н	-4.13659 -2.18302 2.38495
С	-5.08745 -5.35978 0.34655
Н	-6.21699 -4.01867 -0.91942
С	-10.77988 -1.09372 -0.01603
С	-8.78829 2.65578 0.14627
С	-9.97918 1.62175 -1.695
С	-4.23683 -5.47255 1.46108
Н	-3.23396 -4.38596 3.06293
Н	-5.34447 -6.26636 -0.20605
С	-11.39921 -2.24181 -0.56251
С	-11.60511 -0.1119 0.57988
С	-9.27178 3.9063 -0.23925
Н	-8.13873 2.56292 1.02106
С	-10.48398 2.87316 -2.07624
Н	-10.24167 0.73112 -2.27107
0	-3.79758 -6.74726 1.76144
С	-12.78887 -2.40407 -0.5131
Н	-10.77741 -3.00268 -1.04417
С	-12.99551 -0.27244 0.61864
Н	-11.15228 0.77326 1.0341
С	-10.12761 4.02086 -1.34951
Н	-9.00945 4.81242 0.31163
Н	-11.14164 2.93625 -2.94559
С	-2.92221 -6.9533 2.88323
С	-13.59587 -1.41757 0.07358
Н	-13.24468 -3.30117 -0.94407
Н	-13.61365 0.49875 1.08916
0	-10.56435 5.29702 -1.64877
Н	-3.40373 -6.65191 3.83374
Н	-2.71666 -8.03374 2.90557
Н	-1.97026 -6.40098 2.76114
Н	-14.68267 -1.54082 0.10766
С	-11.43989 5.50554 -2.76967
Н	-11.64095 6.58682 -2.79313
Н	-10.96085 5.20096 -3.72044
Н	-12.3942 4.95748 -2.64615

Energy Levels

Alpha occ. eigenvalues19.15891 -19.15880 -19.15847 -19.15785 -14.37009)
Alpha occ. eigenvalues14.37000 -14.36985 -14.36973 -10.24500 -10.24492)
Alpha occ. eigenvalues10.24468 -10.24419 -10.23158 -10.23149 -10.23100)
Alpha occ. eigenvalues10.23020 -10.22192 -10.22189 -10.22161 -10.22123	}
Alpha occ. eigenvalues10.20749 -10.20747 -10.20742 -10.20734 -10.19183	3
Alpha occ. eigenvalues10.19170 -10.19132 -10.19119 -10.19020 -10.19012	2
Alpha occ. eigenvalues10.18910 -10.18898 -10.18580 -10.18579 -10.18565	;
Alpha occ. eigenvalues10.18555 -10.18548 -10.18540 -10.18508 -10.18501	-
Alpha occ. eigenvalues10.18424 -10.18420 -10.18419 -10.18409 -10.18384	ŀ
Alpha occ. eigenvalues10.18332 -10.18017 -10.18004 -10.17983 -10.17938	3
Alpha occ. eigenvalues10.17478 -10.17469 -10.17424 -10.17419 -10.17393	;
Alpha occ. eigenvalues10.17380 -10.17371 -10.17370 -10.17346 -10.17326	5
Alpha occ. eigenvalues10.17322 -10.17322 -10.17316 -10.17315 -10.17314	ŀ
Alpha occ. eigenvalues10.17308 -10.17282 -10.17271 -10.16498 -10.16491	-
Alpha occ. eigenvalues10.16490 -10.16478 -1.06618 -1.06609 -1.06575	
Alpha occ. eigenvalues1.06514 -1.00214 -1.00203 -0.97447 -0.97436	
Alpha occ. eigenvalues0.87239 -0.87223 -0.87083 -0.86611 -0.86520	
Alpha occ. eigenvalues0.85743 -0.85725 -0.85208 -0.80890 -0.80875	
Alpha occ. eigenvalues0.80631 -0.80097 -0.78852 -0.77005 -0.76702	
Alpha occ. eigenvalues0.76395 -0.76093 -0.76027 -0.75912 -0.75277	
Alpha occ. eigenvalues0.74880 -0.74635 -0.74458 -0.74422 -0.74234	
Alpha occ. eigenvalues0.74135 -0.73940 -0.73569 -0.70425 -0.70297	
Alpha occ. eigenvalues0.70006 -0.69202 -0.69109 -0.68277 -0.64902	
Alpha occ. eigenvalues0.63576 -0.63334 -0.63325 -0.62930 -0.62456	
Alpha occ. eigenvalues0.62209 -0.62106 -0.61814 -0.61490 -0.61332	
Alpha occ. eigenvalues0.60640 -0.60512 -0.60264 -0.59482 -0.58593	
Alpha occ. eigenvalues0.57459 -0.57343 -0.57305 -0.57275 -0.56109	
Alpha occ. eigenvalues0.56031 -0.54766 -0.54718 -0.54182 -0.54158	
Alpha occ. eigenvalues0.53542 -0.53506 -0.53108 -0.52026 -0.50808	
Alpha occ. eigenvalues0.50733 -0.50515 -0.50236 -0.50179 -0.48797	
Alpha occ. eigenvalues0.48540 -0.48230 -0.47710 -0.47692 -0.47666	
Alpha occ. eigenvalues0.47643 -0.47576 -0.47486 -0.46488 -0.46389	
Alpha occ. eigenvalues0.45995 -0.45922 -0.45882 -0.45845 -0.45614	
Alpha occ. eigenvalues0.45446 -0.45268 -0.44700 -0.44412 -0.44276	
Alpha occ. eigenvalues0.44135 -0.44100 -0.44041 -0.44005 -0.43799	
Alpha occ. eigenvalues0.43764 -0.43615 -0.43435 -0.43191 -0.43136	
Alpha occ. eigenvalues0.42828 -0.42772 -0.42532 -0.42521 -0.42333	
Alpha occ. eigenvalues0.42305 -0.41953 -0.41887 -0.40911 -0.40758	
Alpha occ. eigenvalues0.40731 -0.40479 -0.40380 -0.39981 -0.39960	
Alpha occ. eigenvalues0.39437 -0.39394 -0.38809 -0.38438 -0.38152	
Alpha occ. eigenvalues0.37907 -0.37875 -0.37613 -0.37372 -0.37131	
Alpha occ. eigenvalues0.36879 -0.36855 -0.36531 -0.35706 -0.35683	
Alpha occ. eigenvalues0.35498 -0.35442 -0.35270 -0.35002 -0.34708	

Alpha occ. eigenvalues	-0.34683	-0.33739	-0.33182	-0.33110	-0.33100
Alpha occ. eigenvalues	-0.33065	-0.33027	-0.32949	-0.32525	-0.32174
Alpha occ. eigenvalues	-0.29425	-0.28451	-0.28221	-0.27289	-0.27178
Alpha occ. eigenvalues	-0.27148	-0.27064	-0.26483	-0.25911	-0.25836
Alpha occ. eigenvalues	-0.25824	-0.25773	-0.25232	-0.24880	-0.24863
Alpha occ. eigenvalues	-0.23404	-0.22799	-0.22682	-0.20349	-0.20304
Alpha occ. eigenvalues	-0.18504	-0.17658			
Alpha virt. eigenvalues	-0.05283	-0.03428	-0.02423	-0.02215	-0.02176
Alpha virt. eigenvalues	-0.02157	-0.01911	-0.01147	-0.00886	-0.00839
Alpha virt. eigenvalues	-0.00804	-0.00726	-0.00326	-0.00320	-0.00151
Alpha virt. eigenvalues	0.00713	0.04257	0.05508	0.06002	0.06114
Alpha virt. eigenvalues	0.06186	0.06238	0.07010	0.07096	0.07261
Alpha virt. eigenvalues	0.07390	0.07869	0.07898	0.08207	0.08326
Alpha virt. eigenvalues	0.08655	0.08891	0.09462	0.09626	0.09886
Alpha virt. eigenvalues	0.10190	0.10434	0.10494	0.10612	0.10889
Alpha virt. eigenvalues	0.11000	0.11119	0.11121	0.11178	0.11243
Alpha virt. eigenvalues	0.11474	0.11670	0.11687	0.11995	0.12188
Alpha virt. eigenvalues	0.12230	0.12286	0.12506	0.12795	0.12854
Alpha virt. eigenvalues	0.12862	0.12935	0.13021	0.13247	0.13392
Alpha virt. eigenvalues	0.13539	0.13970	0.14050	0.14094	0.14129
Alpha virt. eigenvalues	0.14241	0.14352	0.14519	0.14821	0.14872
Alpha virt. eigenvalues	0.15055	0.15549	0.15828	0.16152	0.16211
Alpha virt. eigenvalues	0.16302	0.16344	0.16519	0.16614	0.16829
Alpha virt. eigenvalues	0.16965	0.17049	0.17743	0.18646	0.18814
Alpha virt. eigenvalues	0.18999	0.19269	0.20118	0.21776	0.21814
Alpha virt. eigenvalues	0.22102	0.22233	0.23016	0.23020	0.23042
Alpha virt. eigenvalues	0.23097	0.23301	0.23380	0.24527	0.25322
Alpha virt. eigenvalues	0.26359	0.26374	0.26747	0.27001	0.27402
Alpha virt. eigenvalues	0.27484	0.27555	0.27908	0.28079	0.28692
Alpha virt. eigenvalues	0.28877	0.29208	0.29256	0.29576	0.29719
Alpha virt. eigenvalues	0.30176	0.30275	0.30422	0.30694	0.30741
Alpha virt. eigenvalues	0.30949	0.31017	0.31174	0.31543	0.31749
Alpha virt. eigenvalues	0.32078	0.32135	0.32202	0.32350	0.32434
Alpha virt. eigenvalues	0.32474	0.32965	0.33768	0.33826	0.33975
Alpha virt. eigenvalues	0.34488	0.35002	0.35271	0.35427	0.35660
Alpha virt. eigenvalues	0.36096	0.36210	0.36382	0.36695	0.36996
Alpha virt. eigenvalues	0.37112	0.37970	0.38112	0.38243	0.38399
Alpha virt. eigenvalues	0.38716	0.39283	0.39485	0.39977	0.40068
Alpha virt. eigenvalues	0.40723	0.40777	0.41310	0.41419	0.41725
Alpha virt. eigenvalues	0.41868	0.42155	0.42554	0.42922	0.43109
Alpha virt. eigenvalues	0.43849	0.43909	0.43945	0.44157	0.44356
Alpha virt. eigenvalues	0.44459	0.44509	0.44718	0.44887	0.45098
Alpha virt. eigenvalues	0.45173	0.45241	0.45422	0.45531	0.45795
Alpha virt. eigenvalues	0.45947	0.46068	0.46143	0.46332	0.46377

Alpha virt. eigenvalues	0.46406	0.46678	0.46803	0.47099	0.47393
Alpha virt. eigenvalues	0.47530	0.47616	0.47701	0.47752	0.48101
Alpha virt. eigenvalues	0.48164	0.48438	0.48520	0.48682	0.48870
Alpha virt. eigenvalues	0.49021	0.49486	0.49548	0.49625	0.49733
Alpha virt. eigenvalues	0.49794	0.49952	0.49985	0.50357	0.50422
Alpha virt. eigenvalues	0.50492	0.50788	0.50847	0.51299	0.51509
Alpha virt. eigenvalues	0.52063	0.52095	0.52229	0.52441	0.52596
Alpha virt. eigenvalues	0.52817	0.52959	0.53267	0.53548	0.53604
Alpha virt. eigenvalues	0.53968	0.54035	0.54313	0.54703	0.54984
Alpha virt. eigenvalues	0.55677	0.55800	0.55922	0.56533	0.56648
Alpha virt. eigenvalues	0.56916	0.57088	0.57392	0.57526	0.57608
Alpha virt. eigenvalues	0.57793	0.57990	0.58284	0.58433	0.59033
Alpha virt. eigenvalues	0.59306	0.59439	0.59810	0.60083	0.60306
Alpha virt. eigenvalues	0.60729	0.61039	0.61267	0.61338	0.61398
Alpha virt. eigenvalues	0.61710	0.61893	0.62133	0.62448	0.62672
Alpha virt. eigenvalues	0.63014	0.63167	0.63386	0.63553	0.64026
Alpha virt. eigenvalues	0.64059	0.64156	0.64271	0.64357	0.64495
Alpha virt. eigenvalues	0.64686	0.64748	0.65145	0.65505	0.65814
Alpha virt. eigenvalues	0.65822	0.65861	0.65947	0.66288	0.66357
Alpha virt. eigenvalues	0.66686	0.66729	0.66742	0.66943	0.66990
Alpha virt. eigenvalues	0.67158	0.67393	0.67450	0.67575	0.68079
Alpha virt. eigenvalues	0.68160	0.68209	0.68271	0.68340	0.68413
Alpha virt. eigenvalues	0.68617	0.68857	0.69163	0.69267	0.69378
Alpha virt. eigenvalues	0.69433	0.69530	0.69645	0.69681	0.69729
Alpha virt. eigenvalues	0.69911	0.69989	0.70188	0.70383	0.70508
Alpha virt. eigenvalues	0.70606	0.70892	0.70933	0.71001	0.71196
Alpha virt. eigenvalues	0.71294	0.71669	0.71997	0.72218	0.72357
Alpha virt. eigenvalues	0.72609	0.72838	0.72969	0.73053	0.73258
Alpha virt. eigenvalues	0.73506	0.73638	0.73852	0.74118	0.74543
Alpha virt. eigenvalues	0.74836	0.74974	0.75095	0.75248	0.75500
Alpha virt. eigenvalues	0.75508	0.75720	0.75800	0.76053	0.76483
Alpha virt. eigenvalues	0.77014	0.77444	0.77592	0.77843	0.78003
Alpha virt. eigenvalues	0.78085	0.78265	0.78444	0.78577	0.78862
Alpha virt. eigenvalues	0.79136	0.79213	0.79443	0.79837	0.80231
Alpha virt. eigenvalues	0.80530	0.80774	0.80824	0.80983	0.81217
Alpha virt. eigenvalues	0.81301	0.81811	0.82655	0.82820	0.82931
Alpha virt. eigenvalues	0.83213	0.83269	0.84098	0.84249	0.84417
Alpha virt. eigenvalues	0.84756	0.84992	0.85146	0.85342	0.85657
Alpha virt. eigenvalues	0.85760	0.85910	0.86019	0.87374	0.88327
Alpha virt. eigenvalues	0.88573	0.88626	0.89342	0.89622	0.89693
Alpha virt. eigenvalues	0.89887	0.91219	0.91527	0.91810	0.92096
Alpha virt. eigenvalues	0.92358	0.93454	0.93474	0.93800	0.94186
Alpha virt. eigenvalues	0.94205	0.95095	0.95269	0.95585	0.96099
Alpha virt. eigenvalues	0.97078	0.97334	0.98206	0.98882	0.99160

Alpha virt. eigenvalues	0.99369	0.99611	1.00154	1.00500	1.01358
Alpha virt. eigenvalues	1.01769	1.01809	1.02262	1.02357	1.02974
Alpha virt. eigenvalues	1.03754	1.04026	1.05450	1.06684	1.07049
Alpha virt. eigenvalues	1.07591	1.08159	1.10103	1.10219	1.10568
Alpha virt. eigenvalues	1.10591	1.10975	1.11141	1.12137	1.12539
Alpha virt. eigenvalues	1.12766	1.13072	1.13517	1.13837	1.13946
Alpha virt. eigenvalues	1.14466	1.14624	1.15168	1.15486	1.15949
Alpha virt. eigenvalues	1.16074	1.16568	1.16710	1.17080	1.17167
Alpha virt. eigenvalues	1.17491	1.17541	1.18038	1.18759	1.19807
Alpha virt. eigenvalues	1.21533	1.22694	1.22812	1.23100	1.24824
Alpha virt. eigenvalues	1.25046	1.25338	1.27375	1.27558	1.27611
Alpha virt. eigenvalues	1.27809	1.27925	1.28872	1.30565	1.30744
Alpha virt. eigenvalues	1.32048	1.33188	1.33976	1.33995	1.34858
Alpha virt. eigenvalues	1.35805	1.36679	1.37467	1.37868	1.38576
Alpha virt. eigenvalues	1.41035	1.44608	1.47099	1.48575	1.49996
Alpha virt. eigenvalues	1.50157	1.50967	1.52362	1.52447	1.53586
Alpha virt. eigenvalues	1.57649	1.57774	1.58445	1.58527	1.58586
Alpha virt. eigenvalues	1.58823	1.58975	1.59890	1.65666	1.67038
Alpha virt. eigenvalues	1.73960	1.73976	1.74008	1.74060	1.77044
Alpha virt. eigenvalues	1.77581				

Lowest Excited States (ES)

Table S2. A table of the lowest lying 15 excited states where the energy (eV), oscillator strengths (f), most significant transition, % contribution of the transition are provided for each.

、 //	0	,		
ES	Energy (eV)	ſ	Transition	% Contribution
1	3.00	2.1848	$HOMO \rightarrow LUMO$	100%
2	3.33	0.0012	$HOMO - 1 \rightarrow LUMO$	87.2%
3	3.61	0.0042	$HOMO \rightarrow LUMO + 1$	63.0%
4	3.68	0.1178	$HOMO - 2 \rightarrow LUMO$	86.0%
5	3.70	0.0080	$HOMO - 3 \rightarrow LUMO$	67.5%
6	3.70	0.0689	$HOMO \rightarrow LUMO + 2$	42.1%
7	3.71	0.0007	$HOMO \rightarrow LUMO + 3$	36.8%
8	3.72	0.0040	$HOMO \rightarrow LUMO + 4$	36.7%
9	3.73	0.0047	$HOMO \rightarrow LUMO + 5$	40.8%
10	3.83	0.5231	$HOMO - 1 \rightarrow LUMO + 1$	56.9%
11	3.90	0.0303	$HOMO \rightarrow LUMO + 6$	28.8%
12	3.98	0.0001	$HOMO \rightarrow LUMO + 7$	58.3%
13	4.03	0.0068	$HOMO \rightarrow LUMO + 8$	44.3%
14	4.03	0.0002	$HOMO - 1 \rightarrow LUMO+2$	32.4%
15	4.09	0.0718	$HOMO \rightarrow LUMO + 10$	44.2%

Geometric Images

Figure S22. Two geometric perspectives are given with a top view on the left and a front view on the right.

Simulated UV-Vis Spectra

Figure S23. Simulated UV-visible absorbance spectrum of the neutral Ph₂DHPP oligomer in gas phase.

Ph₂DHPP Radical Cation

Cartesian Coordinates

С	9.36346	0.87422	0.0496
С	8.45935	1.89549	0.44146
С	7.16368	1.38848	0.22396
С	7.25182	0.06395	-0.29943
С	5.04799	0.58431	-0.12823
С	5.96041	-0.43867	-0.52297
Н	8.75318	2.887	0.79004
Н	5.67005	-1.43144	-0.87193
Ν	5.79155	1.71708	0.33803
Ν	8.62865	-0.2614	-0.40939
С	5.31035	3.07551	0.60138
С	5.71542	3.73411	1.78519

С	4.50141 3.74596 -0.33694
С	5.30611 5.04435 2.02533
Н	6.34992 3.20867 2.50965
С	4.07673 5.05881 -0.09704
Н	4.20294 3.23489 -1.2608
С	4.47768 5.72706 1.08898
Н	5.61138 5.57043 2.93784
Н	3.44836 5.55899 -0.83923
С	9.13038 -1.60302 -0.71004
С	10.02618 -2.24831 0.16486
С	8.67242 -2.26805 -1.87082
С	10.48462 -3.54122 -0.11716
Н	10.36818 -1.73318 1.07103
С	9.11421 -3.55949 -2.15081
Н	7.97496 -1.76089 -2.54862
С	10.03162 -4.21551 -1.2807
Н	11.18314 -4.02038 0.57452
Н	8.77087 -4.08897 -3.04761
0	4.13963 7.0381 1.46391
0	10.39516 -5.50885 -1.69146
С	3.3062 7.72321 0.46801
Н	3.12459 8.73144 0.88136
Н	3.82054 7.82038 -0.50868
Н	2.33361 7.21365 0.31809
С	11.34305 -6.15648 -0.7759
Н	10.91637 -6.2904 0.23801
Н	11.54411 -7.14949 -1.21616
Н	12.29571 -5.59577 -0.69879
С	3.58352 0.47228 -0.08641
С	2.77535 1.23353 0.80615
С	2.92777 -0.47655 -0.92422
С	1.39368 1.06214 0.84505
Н	3.24947 1.94462 1.49168
С	1.54669 -0.64435 -0.87954
Н	3.51999 -1.06834 -1.63218
С	0.73523 0.12183 0.00387
Н	0.80954 1.64533 1.56633
Н	1.07796 -1.36401 -1.56057
С	10.84446 0.97281 0.02187
С	11.50208 1.77993 0.98551
С	11.622 0.33575 -0.97892
С	12.8942 1.9302 0.95807
Н	10.91268 2.27732 1.76537
С	13.01355 0.49425 -1.0025

Н	11.12853 -0.26873 -1.74876
С	13.65501 1.28691 -0.03413
Н	13.39015 2.55097 1.71494
Н	13.60259 0.00204 -1.78669
Н	14.74583 1.40692 -0.05564
С	-0.74325 -0.05695 0.0506
С	-1.59766 0.97241 0.53624
С	-1.35798 -1.26112 -0.39288
С	-2.97975 0.80963 0.57336
Н	-1.16624 1.923 0.87045
С	-2.73897 -1.43654 -0.34239
Н	-0.73535 -2.0802 -0.77104
С	-3.5911 -0.40459 0.14495
Н	-3.60903 1.62442 0.95066
Н	-3.17619 -2.3756 -0.69941
С	-5.056 -0.52246 0.16247
С	-5.98874 0.5535 0.07724
Ν	-5.77323 -1.7627 0.15237
С	-7.26655 -0.02411 0.0148
Н	-5.71785 1.60913 0.01464
С	-7.15015 -1.44534 0.06543
С	-5.27624 -3.10361 0.47026
Ν	-8.64773 0.28866 -0.07538
С	-8.43244 -2.02461 0.00951
С	-4.50801 -3.32953 1.6292
С	-5.62482 -4.18618 -0.36987
С	-9.35683 -0.95121 -0.07783
С	-9.166 1.62821 -0.35678
Н	-8.70681 -3.0791 0.07072
С	-4.06756 -4.62034 1.94734
Н	-4.25337 -2.48777 2.28523
С	-5.19995 -5.47507 -0.05346
Н	-6.22774 -4.00484 -1.26827
С	-10.83718 -1.06213 -0.07989
С	-8.77012 2.70904 0.46444
С	-10.01547 1.8536 -1.45766
С	-4.41171 -5.71255 1.10908
Н	-3.47096 -4.7715 2.85127
Н	-5.46148 -6.32624 -0.69357
С	-11.44491 -2.19962 -0.67094
С	-11.66447 -0.09614 0.54818
С	-9.22725 3.99562 0.18664
Н	-8.10859 2.52777 1.32036
С	-10.48921 3.14198 -1.73508

Н	-10.30902 1.01379 -2.09955
0	-4.05157 -7.05702 1.29911
С	-12.83646 -2.35588 -0.64873
Н	-10.81675 -2.95359 -1.16075
С	-13.05524 -0.26148 0.57018
Н	-11.2108 0.7749 1.035
С	-10.09833 4.23236 -0.9153
Н	-8.93191 4.84487 0.81434
Н	-11.15096 3.29206 -2.59271
С	-3.2586 -7.27257 2.51594
С	-13.64661 -1.38722 -0.03024
Н	-13.29327 -3.23676 -1.11728
Н	-13.68326 0.48948 1.06601
0	-10.48394 5.5743 -1.07045
Н	-3.81462 -6.98629 3.43071
Н	-3.05358 -8.35772 2.54383
Н	-2.29636 -6.72363 2.48798
Н	-14.73698 -1.51177 -0.01195
С	-11.38274 5.78466 -2.21244
Н	-11.60713 6.86632 -2.21367
Н	-10.9034 5.51393 -3.17417
Н	-12.32974 5.21925 -2.10579

Energy Levels

Alpha	occ. eigenvalues19.22802 -19.22761 -19.22342 -19.22318 -14.46353
Alpha	occ. eigenvalues14.46333 -14.46140 -14.46120 -10.31668 -10.31637
Alpha	occ. eigenvalues10.31611 -10.31571 -10.31349 -10.31325 -10.31194
Alpha	occ. eigenvalues10.31169 -10.30197 -10.30182 -10.29804 -10.29783
Alpha	occ. eigenvalues10.29751 -10.29730 -10.29578 -10.29556 -10.28812
Alpha	occ. eigenvalues10.28754 -10.28484 -10.28472 -10.28327 -10.28308
Alpha	occ. eigenvalues10.27890 -10.27881 -10.26974 -10.26957 -10.26663
Alpha	occ. eigenvalues10.26640 -10.26513 -10.26482 -10.26277 -10.26272
Alpha	occ. eigenvalues10.26259 -10.26241 -10.26234 -10.26220 -10.26204
Alpha	occ. eigenvalues10.26200 -10.26036 -10.26019 -10.25862 -10.25838
Alpha	occ. eigenvalues10.25793 -10.25760 -10.25739 -10.25717 -10.25665
Alpha	occ. eigenvalues10.25638 -10.25290 -10.25269 -10.25186 -10.25161
Alpha	occ. eigenvalues10.25080 -10.25065 -10.24946 -10.24929 -10.24785
Alpha	occ. eigenvalues10.24757 -10.24596 -10.24580 -10.24491 -10.24477
Alpha	occ. eigenvalues10.24444 -10.24429 -1.12033 -1.11992 -1.11568
Alpha	occ. eigenvalues1.11545 -1.08181 -1.08159 -1.05011 -1.04990
Alpha	occ. eigenvalues0.95749 -0.94312 -0.94244 -0.94092 -0.93547
Alpha	occ. eigenvalues0.93452 -0.92915 -0.92877 -0.89152 -0.88458
Alpha	occ. eigenvalues0.88245 -0.88114 -0.87175 -0.85028 -0.83865
Alpha	occ. eigenvalues0.83773 -0.83302 -0.83277 -0.82893 -0.82881

Alpha	occ. eigenvalues	-0.82775	-0.82554	-0.81633	-0.81621	-0.81611
Alpha	occ. eigenvalues	-0.81402	-0.80623	-0.80538	-0.78521	-0.76743
Alpha	occ. eigenvalues	-0.76582	-0.76541	-0.75816	-0.75807	-0.73350
Alpha	occ. eigenvalues	-0.71576	-0.70965	-0.70630	-0.70331	-0.69827
Alpha	occ. eigenvalues	-0.69434	-0.69365	-0.69102	-0.68618	-0.68299
Alpha	occ. eigenvalues	-0.68215	-0.67903	-0.67789	-0.67532	-0.66746
Alpha	occ. eigenvalues	-0.65179	-0.65160	-0.64721	-0.64717	-0.63668
Alpha	occ. eigenvalues	-0.63608	-0.62730	-0.62624	-0.61242	-0.60308
Alpha	occ. eigenvalues	-0.60259	-0.59714	-0.59341	-0.59316	-0.58587
Alpha	occ. eigenvalues	-0.57830	-0.57685	-0.57275	-0.56914	-0.56429
Alpha	occ. eigenvalues	-0.56166	-0.55933	-0.55805	-0.55656	-0.54594
Alpha	occ. eigenvalues	-0.54238	-0.54218	-0.53424	-0.53253	-0.53178
Alpha	occ. eigenvalues	-0.53129	-0.52864	-0.52846	-0.52831	-0.52709
Alpha	occ. eigenvalues	-0.52665	-0.52490	-0.52457	-0.52443	-0.52420
Alpha	occ. eigenvalues	-0.52233	-0.52095	-0.51706	-0.51397	-0.51365
Alpha	occ. eigenvalues	-0.51088	-0.50980	-0.50940	-0.50583	-0.50540
Alpha	occ. eigenvalues	-0.50475	-0.49756	-0.49691	-0.49643	-0.49200
Alpha	occ. eigenvalues	-0.48964	-0.48921	-0.48435	-0.48336	-0.48170
Alpha	occ. eigenvalues	-0.48146	-0.47998	-0.47503	-0.47302	-0.47105
Alpha	occ. eigenvalues	-0.46951	-0.46601	-0.46326	-0.46062	-0.46018
Alpha	occ. eigenvalues	-0.45796	-0.45698	-0.45470	-0.44880	-0.44247
Alpha	occ. eigenvalues	-0.44201	-0.44092	-0.44041	-0.43932	-0.43806
Alpha	occ. eigenvalues	-0.43130	-0.42872	-0.42671	-0.42644	-0.41932
Alpha	occ. eigenvalues	-0.41806	-0.41792	-0.40572	-0.40430	-0.40271
Alpha	occ. eigenvalues	-0.40017	-0.39995	-0.39799	-0.39620	-0.39420
Alpha	occ. eigenvalues	-0.38209	-0.37316	-0.36945	-0.35186	-0.35071
Alpha	occ. eigenvalues	-0.34839	-0.34176	-0.34112	-0.34080	-0.33995
Alpha	occ. eigenvalues	-0.33427	-0.32942	-0.32923	-0.32631	-0.32615
Alpha	occ. eigenvalues	-0.31832	-0.29918	-0.29819	-0.28672	-0.28563
Alpha	occ. eigenvalues	-0.27628	-0.26565			
Alpha	virt. eigenvalues	-0.15038	-0.12586	-0.10568	-0.10369	-0.09538
Alpha	virt. eigenvalues	-0.09263	-0.08993	-0.08957	-0.08715	-0.08675
Alpha	virt. eigenvalues	-0.08153	-0.07960	-0.07922	-0.07759	-0.07453
Alpha	virt. eigenvalues	-0.07435	-0.04866	-0.03133	-0.02149	-0.01555
Alpha	virt. eigenvalues	-0.00643	-0.00346	-0.00012	0.00023	0.00326
Alpha	virt. eigenvalues	0.00392	0.00496	0.00681	0.01228	0.01286
Alpha	virt. eigenvalues	0.01557	0.01614	0.01666	0.01732	0.02168
Alpha	virt. eigenvalues	0.02409	0.02761	0.03125	0.03679	0.03718
Alpha	virt. eigenvalues	0.03814	0.03920	0.03976	0.04118	0.04334
Alpha	virt. eigenvalues	0.04367	0.04613	0.05005	0.05139	0.05172
Alpha	virt. eigenvalues	0.05223	0.05907	0.06100	0.06442	0.06459
Alpha	virt. eigenvalues	0.06532	0.06665	0.06690	0.06765	0.07000
Alpha	virt. eigenvalues	0.07009	0.07101	0.07127	0.07200	0.07263
Alpha	virt. eigenvalues	0.07420	0.07467	0.07738	0.07752	0.08020

Alpha virt. eigenvalues	0.08113	0.08229	0.08271	0.08823	0.09109
Alpha virt. eigenvalues	0.09243	0.09574	0.09618	0.09786	0.09833
Alpha virt. eigenvalues	0.10229	0.10297	0.10392	0.10405	0.10656
Alpha virt. eigenvalues	0.10756	0.11560	0.12187	0.12693	0.12905
Alpha virt. eigenvalues	0.13443	0.13842	0.13907	0.14198	0.14309
Alpha virt. eigenvalues	0.14731	0.14755	0.15116	0.15659	0.16063
Alpha virt. eigenvalues	0.17208	0.17532	0.18247	0.18629	0.18684
Alpha virt. eigenvalues	0.19544	0.19647	0.19837	0.20076	0.20248
Alpha virt. eigenvalues	0.20654	0.21369	0.21403	0.22002	0.22172
Alpha virt. eigenvalues	0.22464	0.22697	0.22792	0.23070	0.23328
Alpha virt. eigenvalues	0.23406	0.23811	0.23854	0.23881	0.24152
Alpha virt. eigenvalues	0.24187	0.24258	0.24306	0.24538	0.24764
Alpha virt. eigenvalues	0.24814	0.25209	0.25480	0.26091	0.26246
Alpha virt. eigenvalues	0.26506	0.26748	0.27099	0.27208	0.27532
Alpha virt. eigenvalues	0.27701	0.28396	0.28454	0.28799	0.28823
Alpha virt. eigenvalues	0.29652	0.29975	0.30224	0.30327	0.30623
Alpha virt. eigenvalues	0.30998	0.31272	0.31358	0.31977	0.32167
Alpha virt. eigenvalues	0.32343	0.32523	0.33097	0.33241	0.33860
Alpha virt. eigenvalues	0.34045	0.34197	0.34360	0.35165	0.35226
Alpha virt. eigenvalues	0.35537	0.35647	0.35992	0.36270	0.36532
Alpha virt. eigenvalues	0.36885	0.36985	0.37048	0.37098	0.37236
Alpha virt. eigenvalues	0.37667	0.37904	0.38205	0.38297	0.38394
Alpha virt. eigenvalues	0.38462	0.38733	0.39061	0.39195	0.39462
Alpha virt. eigenvalues	0.39542	0.39857	0.40012	0.40223	0.40331
Alpha virt. eigenvalues	0.40425	0.40468	0.40629	0.40782	0.40854
Alpha virt. eigenvalues	0.40925	0.41135	0.41152	0.41287	0.41548
Alpha virt. eigenvalues	0.41683	0.41737	0.41954	0.41962	0.42160
Alpha virt. eigenvalues	0.42271	0.42597	0.42771	0.42784	0.42935
Alpha virt. eigenvalues	0.43053	0.43338	0.43514	0.43540	0.43768
Alpha virt. eigenvalues	0.43982	0.44312	0.44497	0.44527	0.44596
Alpha virt. eigenvalues	0.45023	0.45092	0.45222	0.45507	0.45572
Alpha virt. eigenvalues	0.45906	0.46354	0.46499	0.46516	0.46647
Alpha virt. eigenvalues	0.46806	0.47491	0.47839	0.47866	0.48394
Alpha virt. eigenvalues	0.48780	0.48849	0.49245	0.49726	0.49889
Alpha virt. eigenvalues	0.50269	0.50398	0.50831	0.50861	0.51025
Alpha virt. eigenvalues	0.51185	0.51440	0.51940	0.51999	0.52133
Alpha virt. eigenvalues	0.52230	0.52667	0.53195	0.53277	0.53404
Alpha virt. eigenvalues	0.53633	0.54212	0.54278	0.54376	0.54609
Alpha virt. eigenvalues	0.54926	0.55120	0.55752	0.55966	0.56194
Alpha virt. eigenvalues	0.56314	0.56881	0.57043	0.57362	0.57528
Alpha virt. eigenvalues	0.58010	0.58266	0.58523	0.58571	0.58716
Alpha virt. eigenvalues	0.58730	0.58955	0.59053	0.59066	0.59255
Alpha virt. eigenvalues	0.59503	0.59695	0.59895	0.59940	0.60177
Alpha virt. eigenvalues	0.60314	0.60408	0.60494	0.60820	0.60976
-					

Alpha virt. eigenvalues	0.61096	0.61156	0.61217	0.61261	0.61334
Alpha virt. eigenvalues	0.61422	0.61530	0.61629	0.61705	0.62036
Alpha virt. eigenvalues	0.62200	0.62266	0.62587	0.62655	0.62958
Alpha virt. eigenvalues	0.63014	0.63274	0.63345	0.63361	0.63437
Alpha virt. eigenvalues	0.63500	0.63659	0.63863	0.63942	0.64006
Alpha virt. eigenvalues	0.64114	0.64173	0.64387	0.64483	0.64759
Alpha virt. eigenvalues	0.64860	0.65054	0.65269	0.65465	0.65629
Alpha virt. eigenvalues	0.65872	0.66114	0.66334	0.66434	0.66883
Alpha virt. eigenvalues	0.67033	0.67257	0.67286	0.67399	0.67562
Alpha virt. eigenvalues	0.67844	0.68024	0.68268	0.68357	0.68555
Alpha virt. eigenvalues	0.68931	0.69743	0.69827	0.70005	0.70152
Alpha virt. eigenvalues	0.70425	0.70506	0.70581	0.70862	0.71386
Alpha virt. eigenvalues	0.71506	0.71709	0.71845	0.72170	0.72393
Alpha virt. eigenvalues	0.72647	0.72681	0.72874	0.73107	0.73152
Alpha virt. eigenvalues	0.73770	0.73786	0.74124	0.74360	0.75401
Alpha virt. eigenvalues	0.75479	0.75510	0.75836	0.76524	0.76634
Alpha virt. eigenvalues	0.77047	0.77149	0.77304	0.77331	0.77396
Alpha virt. eigenvalues	0.77730	0.77767	0.78316	0.78679	0.80214
Alpha virt. eigenvalues	0.80528	0.80607	0.80898	0.81070	0.81212
Alpha virt. eigenvalues	0.81542	0.82299	0.83504	0.83798	0.84075
Alpha virt. eigenvalues	0.84315	0.84778	0.85810	0.85931	0.86438
Alpha virt. eigenvalues	0.86781	0.86845	0.87488	0.88390	0.88579
Alpha virt. eigenvalues	0.89900	0.90536	0.91122	0.91366	0.91753
Alpha virt. eigenvalues	0.92080	0.92390	0.92593	0.93703	0.95089
Alpha virt. eigenvalues	0.95473	0.95765	0.95889	0.96372	0.96554
Alpha virt. eigenvalues	0.97083	0.97985	0.98647	0.99038	1.00448
Alpha virt. eigenvalues	1.02576	1.02861	1.03385	1.03444	1.03818
Alpha virt. eigenvalues	1.03868	1.04017	1.04277	1.04325	1.04382
Alpha virt. eigenvalues	1.05045	1.05204	1.05866	1.06031	1.06662
Alpha virt. eigenvalues	1.06801	1.07746	1.07949	1.08560	1.08694
Alpha virt. eigenvalues	1.08960	1.09338	1.09814	1.10184	1.10767
Alpha virt. eigenvalues	1.10866	1.11344	1.11754	1.11995	1.12998
Alpha virt. eigenvalues	1.13413	1.14111	1.14903	1.15894	1.16859
Alpha virt. eigenvalues	1.17094	1.17903	1.18221	1.19057	1.19718
Alpha virt. eigenvalues	1.19953	1.20165	1.20230	1.23207	1.23550
Alpha virt. eigenvalues	1.23792	1.25521	1.25781	1.26968	1.27074
Alpha virt. eigenvalues	1.27410	1.28690	1.28969	1.29934	1.30167
Alpha virt. eigenvalues	1.32017	1.35720	1.38088	1.40358	1.41842
Alpha virt. eigenvalues	1.42150	1.42847	1.43988	1.44826	1.45151
Alpha virt. eigenvalues	1.46910	1.47132	1.47705	1.47749	1.50035
Alpha virt. eigenvalues	1.50674	1.51063	1.51152	1.56040	1.57344
Alpha virt. eigenvalues	1.67353	1.67682	1.68477	1.68544	1.68961
Alpha virt. eigenvalues	1.68986				

Lowest Excited States (ES)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ibution
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1%
$ \begin{vmatrix} 6 & 1.76 & 0.0001 & SOMO_{\beta} - 5 \rightarrow LUMO_{\beta} & 79.6 \\ 7 & 2.00 & 0.0001 & SOMO_{\beta} - 6 \rightarrow LUMO_{\beta} & 63.6 \\ 8 & 2.01 & 0.0000 & SOMO_{\beta} - 7 \rightarrow LUMO_{\beta} & 63.5 \\ \end{vmatrix} $	1%
7 2.00 0.0001 SOMO _{β} - 6 \rightarrow LUMO _{β} 63.6 63.6 <t< td=""><td><u>%</u></td></t<>	<u>%</u>
8 2.01 0.0000 SOMO ₆ - 7 \rightarrow LUMO ₆ 63.5	5%
	%
9 2.18 0.0322 SOMO _B – 8 \rightarrow LUMO _B 64.0	1%
$10 \qquad 2.20 \qquad 0.0002 \qquad \text{SOMO}_{\beta} - 9 \rightarrow \text{LUMO}_{\beta} \qquad 83.9$	1%
11 2.21 $0.0057 \text{ SOMO}_{\beta} - 10 \rightarrow \text{LUMO}_{\beta}$ 59.5	%
12 2.23 0.0003 SOMO _{β} \rightarrow LUMO _{β} + 1 53.2	.%
13 2.35 1.0560 SOMO _{α} \rightarrow LUMO _{α} 45.6	5%
14 2.39 0.0010 $SOMO_{\beta} - 12 \rightarrow LUMO_{\beta}$ 51.7	'%
$15 \qquad 2.46 \qquad 0.0000 \qquad \text{SOMO}_{\beta} - 14 \rightarrow \text{LUMO}_{\beta} \qquad 46.9$	1%

Table S3. A table of the lowest lying 15 excited states where the energy (eV), oscillator strengths (f), most significant transition, % contribution of the transition are provided for each.

Geometric Images

Figure S24. Two geometric perspectives are given with a top view on the left and a front view on the right.

Simulated UV-Vis Spectra

Figure S25. Simulated UV-visible absorbance spectrum of the neutral $Ph_2DHPP+1$ oligomer in gas phase.

Th₂DHPP Neutral

Cartesian Coordinates

С	8.88335 -0.68491 0.11504
С	8.10267 -1.84712 -0.01028
С	6.7552 -1.41361 -0.03565
С	6.72158 -0.01413 0.07886
С	4.59271 -0.74418 -0.07242
С	5.37479 0.41924 0.05362
Н	8.49315 -2.86233 -0.02762
Н	4.98451 1.43462 0.06936
Ν	5.44724 -1.87318 -0.11554
Ν	8.0304 0.44455 0.15809
С	5.07605 -3.2499 -0.10302
С	5.53255 -4.10807 -1.12122
С	4.28423 -3.76885 0.93059
С	5.19865 -5.46277 -1.10388
Н	6.14732 -3.7022 -1.92942
С	3.92999 -5.12512 0.94468
Н	3.93857 -3.10619 1.72797
С	4.39036 -5.9768 -0.07367
Н	5.54462 -6.14472 -1.88388
Н	3.30634 -5.50207 1.75777
С	8.40283 1.8205 0.15133
С	9.2174 2.33819 -0.86506
С	7.92418 2.68038 1.15801
С	9.57122 3.6947 -0.87355
Н	9.58001 1.67469 -1.65407

С	8.25787 4.03515 1.14583
Н	7.29187 2.27585 1.95325
С	9.08813 4.54794 0.13276
Н	10.21195 4.07073 -1.67372
Н	7.89451 4.71809 1.91703
0	4.10342 -7.325 -0.14571
0	9.37245 5.8969 0.20852
С	3.28448 -7.93619 0.86628
Н	3.20404 -8.99605 0.58312
Н	3.75183 -7.8582 1.86699
Н	2.27327 -7.48606 0.89515
С	10.20951 6.50722 -0.78869
Н	9.76202 6.42585 -1.79821
Н	10.28246 7.56798 -0.50676
Н	11.22211 6.05921 -0.79703
С	3.16014 -0.82599 -0.20162
С	2.35783 -1.75128 -0.84646
S	2.13989 0.4765 0.52876
С	0.96503 -1.45998 -0.79622
Н	2.76508 -2.61485 -1.37467
С	0.63976 -0.29957 -0.11534
Н	0.20657 -2.08862 -1.27017
С	10.31932 -0.60115 0.24481
С	11.11101 0.29825 0.93282
S	11.35028 -1.85522 -0.55206
С	12.51546 0.01896 0.85816
Н	10.69469 1.12986 1.50414
С	12.81865 -1.096 0.11964
Н	13.27496 0.62645 1.3564
Н	13.79384 -1.5372 -0.08118
С	-0.63976 0.29957 0.11534
S	-2.13989 -0.4765 -0.52876
С	-0.96503 1.45998 0.79622
С	-3.16014 0.82599 0.20162
С	-2.35783 1.75128 0.84646
Н	-0.20657 2.08862 1.27017
С	-4.59271 0.74418 0.07242
Н	-2.76508 2.61485 1.37467
С	-5.37479 -0.41924 -0.05362
Ν	-5.44724 1.87318 0.11554
С	-6.72158 0.01413 -0.07886
Н	-4.98451 -1.43462 -0.06936
С	-6.7552 1.41361 0.03565
С	-5.07605 3.2499 0.10302

Ν	-8.0304 -0.44455 -0.15809
С	-8.10267 1.84712 0.01028
С	-4.28423 3.76885 -0.93059
С	-5.53255 4.10807 1.12122
С	-8.88335 0.68491 -0.11504
С	-8.40283 -1.8205 -0.15133
Н	-8.49315 2.86233 0.02762
С	-3.92999 5.12512 -0.94468
Н	-3.93857 3.10619 -1.72797
С	-5.19865 5.46277 1.10388
Н	-6.14732 3.7022 1.92942
С	-10.31932 0.60115 -0.24481
С	-7.92418 -2.68038 -1.15801
С	-9.2174 -2.33819 0.86506
С	-4.39036 5.9768 0.07367
Н	-3.30634 5.50207 -1.75777
Н	-5.54462 6.14472 1.88388
С	-11.11101 -0.29825 -0.93282
S	-11.35028 1.85522 0.55206
С	-8.25787 -4.03515 -1.14583
Н	-7.29187 -2.27585 -1.95325
С	-9.57122 -3.6947 0.87355
Н	-9.58001 -1.67469 1.65407
0	-4.10342 7.325 0.14571
С	-12.51546 -0.01896 -0.85816
Н	-10.69469 -1.12986 -1.50414
С	-12.81865 1.096 -0.11964
С	-9.08813 -4.54794 -0.13276
Н	-7.89451 -4.71809 -1.91703
Н	-10.21195 -4.07073 1.67372
С	-3.28448 7.93619 -0.86628
Н	-13.27496 -0.62645 -1.3564
Н	-13.79384 1.5372 0.08118
0	-9.37245 -5.8969 -0.20852
Н	-3.75183 7.8582 -1.86699
Н	-3.20404 8.99605 -0.58312
Н	-2.27327 7.48606 -0.89515
С	-10.20951 -6.50722 0.78869
Н	-10.28246 -7.56798 0.50676
Н	-9.76202 -6.42585 1.79821
Н	-11.22211 -6.05921 0.79703

Energy Levels Alpha occ. eigenvalues -- -88.84873 -88.84873 -88.84694 -88.84693 -19.16161

Alpha	occ. eigenvalues	-19.16161 -19.16069 -19.16069 -14.37461 -14	4.37461
Alpha	occ. eigenvalues	-14.37418 -14.37418 -10.24844 -10.24844 -10	0.24782
Alpha	occ. eigenvalues	-10.24782 -10.23368 -10.23368 -10.23239 -10	0.23239
Alpha	occ. eigenvalues	-10.22436 -10.22436 -10.22370 -10.22370 -10	0.21927
Alpha	occ. eigenvalues	-10.21927 -10.21905 -10.21905 -10.21700 -10	0.21675
Alpha	occ. eigenvalues	-10.21675 -10.21675 -10.21652 -10.21652 -10	0.20052
Alpha	occ. eigenvalues	-10.20052 -10.19863 -10.19863 -10.19814 -10	0.19814
Alpha	occ. eigenvalues	-10.18908 -10.18908 -10.18871 -10.18871 -10	0.18844
Alpha	occ. eigenvalues	-10.18844 -10.18817 -10.18817 -10.18701 -10	0.18701
Alpha	occ. eigenvalues	-10.18617 -10.18617 -10.18257 -10.18257 -10	0.18187
Alpha	occ. eigenvalues	-10.18187 -10.17993 -10.17993 -10.17861 -10	0.17858
Alpha	occ. eigenvalues	-10.17679 -10.17679 -10.17666 -10.17666 -10	0.17097
Alpha	occ. eigenvalues	-10.17097 -10.17064 -10.17064 -7.97613 -7.	97613
Alpha	occ. eigenvalues	-7.97371 -7.97370 -5.94034 -5.94034 -5.93	8819
Alpha	occ. eigenvalues	-5.93819 -5.93599 -5.93599 -5.93386 -5.93	386
Alpha	occ. eigenvalues	-5.93089 -5.93089 -5.92811 -5.92811 -1.06	5906
Alpha	occ. eigenvalues	-1.06906 -1.06818 -1.06818 -1.00791 -1.00)791
Alpha	occ. eigenvalues	-0.97973 -0.97973 -0.89579 -0.88489 -0.88	8489
Alpha	occ. eigenvalues	-0.87688 -0.87560 -0.87545 -0.86789 -0.86	5714
Alpha	occ. eigenvalues	-0.81293 -0.81291 -0.80914 -0.80626 -0.78	3476
Alpha	occ. eigenvalues	-0.76833 -0.76753 -0.76632 -0.76357 -0.76	5231
Alpha	occ. eigenvalues	-0.75768 -0.75562 -0.74794 -0.74677 -0.74	1523
Alpha	occ. eigenvalues	-0.74108 -0.73724 -0.73719 -0.73110 -0.72	2662
Alpha	occ. eigenvalues	-0.70651 -0.70527 -0.69695 -0.69482 -0.69	9274
Alpha	occ. eigenvalues	-0.67762 -0.64489 -0.63577 -0.63530 -0.63	8417
Alpha	occ. eigenvalues	-0.63026 -0.62807 -0.62267 -0.62089 -0.61	.787
Alpha	occ. eigenvalues	-0.61727 -0.58968 -0.58351 -0.57975 -0.57	771
Alpha	occ. eigenvalues	-0.57628 -0.56756 -0.56361 -0.56242 -0.55	622
Alpha	occ. eigenvalues	-0.55610 -0.55189 -0.54439 -0.54424 -0.53	8863
Alpha	occ. eigenvalues	-0.53819 -0.53363 -0.52666 -0.52240 -0.52	2047
Alpha	occ. eigenvalues	-0.50972 -0.50957 -0.50636 -0.50601 -0.49	9594
Alpha	occ. eigenvalues	-0.49023 -0.48907 -0.47923 -0.47923 -0.47	/812
Alpha	occ. eigenvalues	-0.47811 -0.47641 -0.46520 -0.46319 -0.46	5230
Alpha	occ. eigenvalues	-0.46128 -0.46127 -0.45648 -0.45583 -0.45	5247
Alpha	occ. eigenvalues	-0.45228 -0.44729 -0.44725 -0.44299 -0.44	296
Alpha	occ. eigenvalues	-0.44229 -0.44209 -0.43550 -0.43502 -0.42	2991
Alpha	occ. eigenvalues	-0.42871 -0.42778 -0.42702 -0.41626 -0.41	439
Alpha	occ. eigenvalues	-0.41318 -0.41251 -0.41072 -0.40995 -0.40)673
Alpha	occ. eigenvalues	-0.40560 -0.40294 -0.40136 -0.40108 -0.40	012
Alpha	occ. eigenvalues	-0.39874 -0.39694 -0.39465 -0.39323 -0.39	9063
Alpha	occ. eigenvalues	-0.38522 -0.38439 -0.38212 -0.38164 -0.37	791
Alpha	occ. eigenvalues	-0.37589 -0.37478 -0.37308 -0.37291 -0.36	5754
Alpha	occ. eigenvalues	-0.35942 -0.35463 -0.35029 -0.34460 -0.34	457
Alpha	occ. eigenvalues	-0.33501 -0.33448 -0.33353 -0.33352 -0.33	3278

Alpha occ. eigenvalues	-0.33265	-0.33147	-0.32976	-0.32622	-0.29937
Alpha occ. eigenvalues	-0.28844	-0.28423	-0.27515	-0.27441	-0.27392
Alpha occ. eigenvalues	-0.27284	-0.26293	-0.25941	-0.25840	-0.25839
Alpha occ. eigenvalues	-0.25491	-0.25034	-0.25014	-0.24596	-0.23381
Alpha occ. eigenvalues	-0.23237	-0.21898	-0.20957	-0.20877	-0.18627
Alpha occ. eigenvalues	-0.16830				
Alpha virt. eigenvalues	-0.07118	-0.04665	-0.03462	-0.02278	-0.02262
Alpha virt. eigenvalues	-0.02156	-0.02150	-0.01556	-0.01204	-0.01060
Alpha virt. eigenvalues	-0.01052	-0.00303	0.02016	0.02392	0.02547
Alpha virt. eigenvalues	0.03126	0.03544	0.04489	0.04957	0.05972
Alpha virt. eigenvalues	0.05984	0.06071	0.06088	0.06234	0.07065
Alpha virt. eigenvalues	0.07486	0.07722	0.07744	0.07770	0.07858
Alpha virt. eigenvalues	0.08177	0.08521	0.08535	0.08856	0.09374
Alpha virt. eigenvalues	0.09903	0.09905	0.10055	0.10205	0.10325
Alpha virt. eigenvalues	0.10428	0.10435	0.10772	0.10900	0.10902
Alpha virt. eigenvalues	0.11031	0.11043	0.11114	0.11167	0.11771
Alpha virt. eigenvalues	0.11829	0.11992	0.12065	0.12543	0.12566
Alpha virt. eigenvalues	0.12657	0.12670	0.12714	0.12734	0.12821
Alpha virt. eigenvalues	0.12825	0.13210	0.13291	0.13502	0.13705
Alpha virt. eigenvalues	0.13819	0.13841	0.14074	0.14214	0.14550
Alpha virt. eigenvalues	0.14563	0.14634	0.15017	0.15105	0.15845
Alpha virt. eigenvalues	0.16246	0.16314	0.16336	0.16407	0.17209
Alpha virt. eigenvalues	0.18976	0.19032	0.19360	0.19593	0.21307
Alpha virt. eigenvalues	0.21433	0.21940	0.22259	0.22613	0.22632
Alpha virt. eigenvalues	0.22781	0.22783	0.23339	0.23789	0.25082
Alpha virt. eigenvalues	0.26051	0.26217	0.26411	0.26733	0.26779
Alpha virt. eigenvalues	0.26944	0.27272	0.27893	0.28534	0.28898
Alpha virt. eigenvalues	0.28973	0.29063	0.29326	0.29535	0.30107
Alpha virt. eigenvalues	0.30291	0.30756	0.30815	0.31131	0.31258
Alpha virt. eigenvalues	0.31921	0.31926	0.32144	0.32331	0.32409
Alpha virt. eigenvalues	0.32425	0.33339	0.33512	0.33725	0.33790
Alpha virt. eigenvalues	0.33976	0.34082	0.34906	0.35499	0.35738
Alpha virt. eigenvalues	0.36286	0.36449	0.37119	0.37424	0.37565
Alpha virt. eigenvalues	0.37697	0.37829	0.38026	0.38238	0.38357
Alpha virt. eigenvalues	0.38840	0.39576	0.40186	0.40386	0.40493
Alpha virt. eigenvalues	0.40986	0.41143	0.41433	0.41600	0.41734
Alpha virt. eigenvalues	0.41779	0.41957	0.42243	0.42776	0.42883
Alpha virt. eigenvalues	0.43705	0.44103	0.44594	0.44634	0.44995
Alpha virt. eigenvalues	0.45110	0.45252	0.45410	0.45729	0.45750
Alpha virt. eigenvalues	0.45942	0.45981	0.45983	0.46192	0.46310
Alpha virt. eigenvalues	0.46318	0.46340	0.46521	0.46691	0.46913
Alpha virt. eigenvalues	0.47143	0.47366	0.47388	0.47761	0.47891
Alpha virt. eigenvalues	0.47913	0.48106	0.48137	0.48209	0.48438
Alpha virt. eigenvalues	0.48802	0.49023	0.49239	0.49406	0.49606

Alpha virt. eigenvalues	0.49715	0.49943	0.50005	0.50379	0.50729
Alpha virt. eigenvalues	0.50771	0.50778	0.51602	0.51789	0.52000
Alpha virt. eigenvalues	0.52178	0.52346	0.52419	0.52874	0.52940
Alpha virt. eigenvalues	0.52984	0.53285	0.53409	0.53741	0.54085
Alpha virt. eigenvalues	0.54162	0.54314	0.54521	0.54710	0.54753
Alpha virt. eigenvalues	0.55508	0.55720	0.55783	0.56012	0.56155
Alpha virt. eigenvalues	0.56657	0.56833	0.57507	0.57688	0.57779
Alpha virt. eigenvalues	0.57898	0.58102	0.58172	0.58997	0.59217
Alpha virt. eigenvalues	0.59426	0.59700	0.59777	0.60256	0.60377
Alpha virt. eigenvalues	0.60911	0.61188	0.61205	0.61397	0.61480
Alpha virt. eigenvalues	0.62561	0.62879	0.63070	0.63327	0.63593
Alpha virt. eigenvalues	0.63762	0.63972	0.64022	0.64333	0.64535
Alpha virt. eigenvalues	0.64699	0.64976	0.65073	0.65331	0.65365
Alpha virt. eigenvalues	0.65605	0.65674	0.65682	0.65908	0.66158
Alpha virt. eigenvalues	0.66251	0.66499	0.66501	0.66754	0.66861
Alpha virt. eigenvalues	0.66869	0.66886	0.67456	0.67755	0.68442
Alpha virt. eigenvalues	0.68468	0.68631	0.68632	0.68693	0.68736
Alpha virt. eigenvalues	0.68974	0.69038	0.69047	0.69340	0.69473
Alpha virt. eigenvalues	0.69506	0.69860	0.69953	0.70202	0.70377
Alpha virt. eigenvalues	0.70521	0.70590	0.70597	0.70903	0.71032
Alpha virt. eigenvalues	0.71317	0.71715	0.71732	0.72299	0.72440
Alpha virt. eigenvalues	0.72507	0.72806	0.73030	0.73276	0.73497
Alpha virt. eigenvalues	0.73737	0.73749	0.74209	0.74455	0.74465
Alpha virt. eigenvalues	0.74606	0.74779	0.74906	0.75080	0.75245
Alpha virt. eigenvalues	0.75670	0.75734	0.75997	0.76003	0.76156
Alpha virt. eigenvalues	0.76474	0.76510	0.77049	0.77077	0.77241
Alpha virt. eigenvalues	0.77309	0.77467	0.77527	0.77598	0.77902
Alpha virt. eigenvalues	0.78082	0.78653	0.79082	0.79608	0.79776
Alpha virt. eigenvalues	0.80181	0.80531	0.80610	0.80901	0.81035
Alpha virt. eigenvalues	0.82119	0.82146	0.82528	0.82551	0.82741
Alpha virt. eigenvalues	0.82895	0.83244	0.83514	0.83928	0.84018
Alpha virt. eigenvalues	0.84909	0.85208	0.86123	0.86217	0.86620
Alpha virt. eigenvalues	0.86807	0.87487	0.87511	0.87560	0.87621
Alpha virt. eigenvalues	0.89392	0.89395	0.90190	0.90757	0.91464
Alpha virt. eigenvalues	0.92187	0.92694	0.92834	0.93023	0.93549
Alpha virt. eigenvalues	0.94168	0.94968	0.95039	0.96103	0.96260
Alpha virt. eigenvalues	0.96768	0.97143	0.98079	0.98504	0.98555
Alpha virt. eigenvalues	0.99030	0.99290	0.99488	1.00294	1.01394
Alpha virt. eigenvalues	1.01418	1.01457	1.01520	1.02143	1.03267
Alpha virt. eigenvalues	1.03990	1.06834	1.08232	1.09196	1.09745
Alpha virt. eigenvalues	1.09755	1.09862	1.10626	1.10673	1.11191
Alpha virt. eigenvalues	1.11210	1.12282	1.12417	1.12757	1.12936
Alpha virt. eigenvalues	1.13107	1.14253	1.14382	1.14819	1.15165
Alpha virt. eigenvalues	1.15951	1.16458	1.16622	1.16920	1.17225
-					

Alpha virt. eigenvalues	1.17312	1.17344	1.17585	1.18501	1.18683
Alpha virt. eigenvalues	1.19357	1.19378	1.21698	1.22939	1.23205
Alpha virt. eigenvalues	1.23498	1.23958	1.25056	1.25066	1.25419
Alpha virt. eigenvalues	1.25508	1.26298	1.27067	1.27553	1.28881
Alpha virt. eigenvalues	1.31731	1.32044	1.32262	1.34258	1.35728
Alpha virt. eigenvalues	1.36642	1.36907	1.39282	1.39725	1.41531
Alpha virt. eigenvalues	1.45986	1.46886	1.48806	1.50766	1.50963
Alpha virt. eigenvalues	1.51229	1.52218	1.52513	1.54291	1.57785
Alpha virt. eigenvalues	1.58356	1.58504	1.58518	1.65001	1.67752
Alpha virt. eigenvalues	1.73569	1.73595	1.73660	1.73662	1.76615
Alpha virt. eigenvalues	1.77893				

Lowest Excited States (ES)

Table S4. A table of the lowest lying 15 excited states where the energy (eV), oscillator strengths (f), most significant transition, % contribution of the transition are provided for each.

1 11	0	,		
ES	Energy (eV)	ſ	<u>Transition</u>	% Contribution
1	2.37	2.2676	$HOMO \rightarrow LUMO$	100%
2	2.84	0.0000	$HOMO - 1 \rightarrow LUMO$	65.4%
3	3.17	0.0000	$HOMO \rightarrow LUMO + 1$	65.3%
4	3.31	0.0738	$HOMO \rightarrow LUMO + 2$	49.6%
5	3.36	0.0855	$HOMO - 2 \rightarrow LUMO$	52.5%
6	3.37	0.0000	$HOMO - 3 \rightarrow LUMO$	100%
7	3.52	0.1606	$HOMO - 1 \rightarrow LUMO + 1$	35.1%
8	3.54	0.0000	$HOMO \rightarrow LUMO + 5$	48.7%
9	3.54	0.0000	$HOMO \rightarrow LUMO + 3$	46.6%
10	3.55	0.1503	$HOMO \rightarrow LUMO + 6$	44.8%
11	3.55	0.1959	$HOMO \rightarrow LUMO + 4$	43.9%
12	3.72	0.0000	$HOMO \rightarrow LUMO + 7$	62.8%
13	3.76	0.0192	$HOMO \rightarrow LUMO + 8$	51.1%
14	3.82	0.0401	$HOMO - 4 \rightarrow LUMO$	31.6%
15	3.83	0.0000	$HOMO - 1 \rightarrow LUMO + 2$	47.9%

Geometric Images

Figure S26. Two geometric perspectives are given with a top view on the left and a front view on the right.

Simulated UV-Vis Spectra

Figure S27. Simulated UV-visible absorbance spectrum of the neutral Th₂DHPP oligomer in gas phase.

Th₂DHPP Radical Cation

Cartesian Coordinates

С	8.834 -0.61746 0.11491
С	8.07523 -1.8128 0.03793
С	6.72962 -1.41716 0.0441
С	6.66298 -0.00005 0.11269
С	4.55398 -0.80591 0.03469
С	5.32585 0.39495 0.09914
Н	8.48991 -2.81778 0.01954
Н	4.91511 1.40147 0.14522
Ν	5.44152 -1.91243 -0.0003
Ν	7.96036 0.48983 0.15292
С	5.12366 -3.30544 -0.11365
С	4.85618 -3.86918 -1.37567
С	5.11029 -4.11789 1.02753
С	4.56161 -5.22677 -1.48699
Н	4.87831 -3.23442 -2.26562
С	4.82125 -5.48615 0.92279
Н	5.32398 -3.67762 2.00551
С	4.54314 -6.0435 -0.33831
Н	4.35041 -5.68728 -2.45451
Н	4.81832 -6.1013 1.82467
С	8.29645 1.88211 0.13395
С	8.80775 2.47075 -1.02995

С	8.09147 2.66961 1.28222
С	9.13179 3.83409 -1.05256
Н	8.96038 1.85861 -1.92293
С	8.40069 4.02923 1.26356
Н	7.69555 2.20684 2.19059
С	8.92653 4.61837 0.09688
Н	9.53436 4.27055 -1.96865
Н	8.25104 4.6605 2.14215
0	4.24626 -7.36653 -0.5494
0	9.20629 5.96037 0.17668
С	4.22871 -8.29402 0.55494
Н	3.97991 -9.27042 0.11526
Н	5.21893 -8.3524 1.0451
Н	3.45771 -8.01779 1.29915
С	9.7556 6.65701 -0.96
Н	9.06246 6.62825 -1.82211
Н	9.88828 7.69781 -0.63163
Н	10.73585 6.23585 -1.25368
С	3.14 -0.8979 0.02614
С	2.2823 -2.00932 0.06928
S	2.16288 0.62775 -0.03347
С	0.91594 -1.69306 0.06126
Н	2.65009 -3.03362 0.11526
С	0.62579 -0.32315 0.0102
Н	0.12868 -2.45042 0.09565
С	10.26594 -0.51253 0.174
С	11.08532 0.5185 0.60812
S	11.26511 -1.93027 -0.33865
С	12.48051 0.21409 0.5517
Н	10.69842 1.467 0.98225
С	12.74965 -1.04598 0.0754
Н	13.26129 0.91129 0.86291
Н	13.71719 -1.52511 -0.06946
С	-0.62579 0.32315 -0.0102
S	-2.16288 -0.62775 0.03347
С	-0.91594 1.69306 -0.06125
С	-3.14 0.8979 -0.02613
С	-2.2823 2.00932 -0.06927
н	-0.12868 2.45042 -0.09563
С	-4.55398 0.80591 -0.03468
Н	-2.65009 3.03362 -0.11524
С	-5.32585 -0.39495 -0.09914
N	-5.44152 1.91243 0.00031
C	-6.66298 0.00005 -0.11269
-	0.000000 0.00000

Н	-4.91511 -1.40147 -0.14523
С	-6.72962 1.41716 -0.0441
С	-5.12366 3.30544 0.11367
Ν	-7.96036 -0.48983 -0.15293
С	-8.07523 1.8128 -0.03793
С	-5.11029 4.1179 -1.0275
С	-4.85617 3.86917 1.37568
С	-8.834 0.61746 -0.11491
С	-8.29645 -1.88211 -0.13397
Н	-8.48991 2.81778 -0.01953
С	-4.82125 5.48615 -0.92276
Н	-5.32398 3.67763 -2.00549
С	-4.56161 5.22676 1.48702
Н	-4.8783 3.23441 2.26564
С	-10.26594 0.51253 -0.174
С	-8.09146 -2.6696 -1.28224
С	-8.80776 -2.47075 1.02992
С	-4.54314 6.04349 0.33834
Н	-4.81832 6.1013 -1.82464
Н	-4.3504 5.68727 2.45454
С	-11.08532 -0.51849 -0.60814
S	-11.26511 1.93026 0.33866
С	-8.40068 -4.02922 -1.26358
Н	-7.69554 -2.20683 -2.19061
С	-9.1318 -3.83409 1.05252
Н	-8.9604 -1.85862 1.92291
0	-4.24626 7.36653 0.54943
С	-12.48051 -0.21409 -0.55172
Н	-10.69842 -1.46699 -0.98228
С	-12.74965 1.04598 -0.0754
С	-8.92653 -4.61837 -0.09691
Н	-8.25102 -4.66049 -2.14218
Н	-9.53437 -4.27056 1.96861
С	-4.22871 8.29402 -0.5549
Н	-13.26129 -0.91128 -0.86295
Н	-13.71719 1.5251 0.06946
0	-9.20629 -5.96036 -0.17672
Н	-5.21893 8.3524 -1.04505
Н	-3.97991 9.27042 -0.11522
Н	-3.45772 8.0178 -1.29911
С	-9.75561 -6.65701 0.95995
Н	-9.88829 -7.69781 0.63158
Н	-9.06248 -6.62825 1.82207
Н	-10.73586 -6.23585 1.25362

Energy Levels

Alpha	occ. eigenvalues	-88.93533 -8	88.93532	-88.9229	2 -88.922	92 -19.2262	16
Alpha	occ. eigenvalues	-19.22616 -1	19.22213	-19.2221	3 -14.459	64 -14.4596	54
Alpha	occ. eigenvalues	-14.45703 -1	14.45703	-10.3193	3 -10.319	33 -10.3159	94
Alpha	occ. eigenvalues	-10.31594 -1	10.31541	-10.3154	1 -10.314	59 -10.3146	59
Alpha	occ. eigenvalues	-10.31337 -1	10.31337	-10.3113	1 -10.310	97 -10.2972	17
Alpha	occ. eigenvalues	-10.29717 -1	10.29504	-10.2950	4 -10.293	45 -10.2934	45
Alpha	occ. eigenvalues	-10.29239 -1	10.29239	-10.2919	1 -10.291	91 -10.2912	15
Alpha	occ. eigenvalues	-10.29115 -1	10.28773	-10.2877	3 -10.275	65 -10.2756	65
Alpha	occ. eigenvalues	-10.27271 -1	10.27268	-10.2694	7 -10.269	47 -10.2650	30
Alpha	occ. eigenvalues	-10.26508 -1	10.26304	-10.2630	4 -10.260	59 -10.2605	59
Alpha	occ. eigenvalues	-10.25804 -1	10.25804	-10.2572	0 -10.257	20 -10.2563	34
Alpha	occ. eigenvalues	-10.25634 -1	10.25518	-10.2551	8 -10.254	08 -10.2540	30
Alpha	occ. eigenvalues	-10.25178 -1	10.25178	-10.2511	1 -10.251	11 -10.2500	00
Alpha	occ. eigenvalues	-10.25000 -1	10.24743	-10.2474	3 -8.0620	5 -8.06204	1
Alpha	occ. eigenvalues	-8.05041 -8	3.05041 ·	-6.02669	-6.02669	-6.02231	
Alpha	occ. eigenvalues	-6.02231 -6	5.01595 ·	-6.01594	-6.01462	-6.01462	
Alpha	occ. eigenvalues	-6.01018 -6	5.01018	-6.00517	-6.00517	-1.13497	
Alpha	occ. eigenvalues	-1.13497 -1	1.13077	-1.13077	-1.09603	-1.09603	
Alpha	occ. eigenvalues	-1.06488 -1	1.06487	-0.98875	-0.96842	-0.96155	
Alpha	occ. eigenvalues	-0.96155 -0).94893 ·	-0.94886	-0.93948	-0.93906	
Alpha	occ. eigenvalues	-0.89705 -0).89282 ·	-0.89072	-0.88901	-0.87501	
Alpha	occ. eigenvalues	-0.85525 -0	D.84059	-0.83750	-0.83532	-0.83387	
Alpha	occ. eigenvalues	-0.83226 -0	D.83176 ·	-0.82835	-0.82787	-0.82002	
Alpha	occ. eigenvalues	-0.81632 -0	D.81602 ·	-0.81374	-0.81225	-0.80933	
Alpha	occ. eigenvalues	-0.78144 -0).77309 ·	-0.77308	-0.76465	-0.76379	
Alpha	occ. eigenvalues	-0.76094 -0	D.73186 ·	-0.71655	-0.70633	-0.70542	
Alpha	occ. eigenvalues	-0.70289 -0	D.70261 ·	-0.69479	-0.69459	-0.69257	
Alpha	occ. eigenvalues	-0.69169 -0	D.67910 ·	-0.67147	-0.66525	-0.65274	
Alpha	occ. eigenvalues	-0.65082 -0	D.65018	-0.64063	-0.63550	-0.63543	
Alpha	occ. eigenvalues	-0.63007 -0	D.62821 ·	-0.62359	-0.61602	-0.61044	
Alpha	occ. eigenvalues	-0.61042 -0	D.60273	-0.60229	-0.59843	-0.59684	
Alpha	occ. eigenvalues	-0.58132 -0).58127	-0.58095	-0.57921	-0.57720	
Alpha	occ. eigenvalues	-0.57118 -0).57103 ·	-0.55958	-0.55305	-0.54180	
Alpha	occ. eigenvalues	-0.54122 -0).53992	-0.53950	-0.53671	-0.53671	
Alpha	occ. eigenvalues	-0.53494 -0).53475 ·	-0.53123	-0.53096	-0.52979	
Alpha	occ. eigenvalues	-0.52946 -0).52565	-0.52564	-0.51847	-0.51438	
Alpha	occ. eigenvalues	-0.51217 -0	D.51205	-0.50826	-0.50824	-0.50372	
Alpha	occ. eigenvalues	-0.50112 -0).49729 ·	-0.49670	-0.49656	-0.49361	
Alpha	occ. eigenvalues	-0.49123 -0	0.49100	-0.48779	-0.48669	-0.48611	
Alpha	occ. eigenvalues	-0.48172 -0	D.48170 ·	-0.48060	-0.47779	-0.47544	
Alpha	occ. eigenvalues	-0.47534 -0	0.47465	-0.46741	-0.46733	-0.46437	
Alpha	occ. eigenvalues	-0.46219 -0).45894 ·	-0.45726	-0.45635	-0.45316	

Alpha	occ. eigenvalues	-0.45230	-0.45106	-0.45001	-0.44288	-0.44167
Alpha	occ. eigenvalues	-0.43661	-0.43427	-0.42791	-0.42100	-0.41730
Alpha	occ. eigenvalues	-0.41729	-0.40314	-0.40146	-0.39924	-0.39785
Alpha	occ. eigenvalues	-0.39693	-0.39653	-0.39349	-0.39296	-0.39192
Alpha	occ. eigenvalues	-0.37776	-0.37264	-0.35588	-0.35068	-0.34816
Alpha	occ. eigenvalues	-0.34326	-0.34301	-0.34169	-0.34069	-0.33209
Alpha	occ. eigenvalues	-0.33167	-0.32726	-0.31460	-0.31404	-0.30767
Alpha	occ. eigenvalues	-0.30691	-0.30302	-0.29602	-0.29568	-0.27030
Alpha	occ. eigenvalues	-0.25067				
Alpha	virt. eigenvalues	-0.16815	-0.13324	-0.11375	-0.09591	-0.09342
Alpha	virt. eigenvalues	-0.09187	-0.08918	-0.08907	-0.08618	-0.08516
Alpha	virt. eigenvalues	-0.08034	-0.08019	-0.06813	-0.06347	-0.06332
Alpha	virt. eigenvalues	-0.04288	-0.04083	-0.03239	-0.03020	-0.02824
Alpha	virt. eigenvalues	-0.00987	-0.00205	-0.00196	0.00146	0.00180
Alpha	virt. eigenvalues	0.00246	0.00250	0.00727	0.01139	0.01379
Alpha	virt. eigenvalues	0.01572	0.01660	0.01850	0.01874	0.02080
Alpha	virt. eigenvalues	0.02143	0.02286	0.02308	0.02796	0.03051
Alpha	virt. eigenvalues	0.03053	0.03892	0.03896	0.04001	0.04061
Alpha	virt. eigenvalues	0.04248	0.04305	0.04493	0.04698	0.04766
Alpha	virt. eigenvalues	0.04777	0.05002	0.05350	0.05439	0.05925
Alpha	virt. eigenvalues	0.06214	0.06219	0.06415	0.06564	0.06583
Alpha	virt. eigenvalues	0.06697	0.06768	0.06911	0.06979	0.07069
Alpha	virt. eigenvalues	0.07171	0.07206	0.07499	0.07506	0.07540
Alpha	virt. eigenvalues	0.08000	0.08011	0.08146	0.08745	0.08878
Alpha	virt. eigenvalues	0.09293	0.09743	0.09750	0.09976	0.09992
Alpha	virt. eigenvalues	0.11199	0.11227	0.11321	0.11354	0.13354
Alpha	virt. eigenvalues	0.13569	0.14136	0.14265	0.14842	0.15025
Alpha	virt. eigenvalues	0.15488	0.15940	0.16191	0.16304	0.16678
Alpha	virt. eigenvalues	0.18044	0.18090	0.18782	0.18790	0.19498
Alpha	virt. eigenvalues	0.19575	0.19878	0.20500	0.21117	0.21404
Alpha	virt. eigenvalues	0.21962	0.22023	0.22405	0.22647	0.22783
Alpha	virt. eigenvalues	0.23173	0.23599	0.23676	0.23764	0.23910
Alpha	virt. eigenvalues	0.24105	0.24340	0.24707	0.24799	0.25327
Alpha	virt. eigenvalues	0.25458	0.25950	0.26050	0.26200	0.26208
Alpha	virt. eigenvalues	0.26552	0.26860	0.26914	0.28071	0.28122
Alpha	virt. eigenvalues	0.28401	0.28710	0.29261	0.29674	0.29885
Alpha	virt. eigenvalues	0.29938	0.30602	0.30837	0.31503	0.31674
Alpha	virt. eigenvalues	0.31784	0.32205	0.32527	0.32961	0.33300
Alpha	virt. eigenvalues	0.33542	0.33559	0.33813	0.33915	0.34204
Alpha	virt. eigenvalues	0.34848	0.34932	0.35007	0.35184	0.35346
Alpha	virt. eigenvalues	0.35813	0.36136	0.36719	0.36839	0.37152
Alpha	virt. eigenvalues	0.37225	0.37619	0.37724	0.38391	0.38580
Alpha	virt. eigenvalues	0.38763	0.38927	0.38942	0.39102	0.39215
Alpha	virt. eigenvalues	0.39384	0.39679	0.39762	0.39802	0.39997

Alpha virt. eigenvalues	0.40138	0.40190	0.40350	0.40612	0.40737
Alpha virt. eigenvalues	0.40890	0.41103	0.41216	0.41396	0.41403
Alpha virt. eigenvalues	0.41585	0.41685	0.41731	0.41819	0.42304
Alpha virt. eigenvalues	0.42550	0.42661	0.42851	0.43218	0.43251
Alpha virt. eigenvalues	0.43414	0.43416	0.43817	0.43879	0.43966
Alpha virt. eigenvalues	0.44160	0.44309	0.45293	0.45356	0.45484
Alpha virt. eigenvalues	0.45917	0.46014	0.46132	0.46158	0.46637
Alpha virt. eigenvalues	0.46783	0.46949	0.47034	0.47315	0.47691
Alpha virt. eigenvalues	0.47737	0.48348	0.48571	0.48611	0.48808
Alpha virt. eigenvalues	0.49236	0.49329	0.49438	0.49855	0.50394
Alpha virt. eigenvalues	0.50472	0.50951	0.51015	0.51365	0.51421
Alpha virt. eigenvalues	0.51740	0.51812	0.52434	0.52524	0.53003
Alpha virt. eigenvalues	0.53094	0.53233	0.53712	0.53983	0.54502
Alpha virt. eigenvalues	0.54663	0.54847	0.55493	0.56059	0.56398
Alpha virt. eigenvalues	0.57080	0.57302	0.57910	0.58092	0.58207
Alpha virt. eigenvalues	0.58256	0.58770	0.58782	0.58993	0.59013
Alpha virt. eigenvalues	0.59151	0.59183	0.59361	0.59506	0.59680
Alpha virt. eigenvalues	0.59792	0.60322	0.60589	0.60699	0.60733
Alpha virt. eigenvalues	0.60801	0.61098	0.61106	0.61260	0.61409
Alpha virt. eigenvalues	0.61419	0.61553	0.61739	0.61847	0.61859
Alpha virt. eigenvalues	0.62052	0.62233	0.62438	0.62478	0.62592
Alpha virt. eigenvalues	0.62664	0.62752	0.63034	0.63042	0.63171
Alpha virt. eigenvalues	0.63295	0.63335	0.63727	0.63756	0.63915
Alpha virt. eigenvalues	0.64237	0.64365	0.64788	0.64800	0.64811
Alpha virt. eigenvalues	0.65125	0.65151	0.65265	0.65547	0.65721
Alpha virt. eigenvalues	0.65734	0.65990	0.66086	0.66406	0.66716
Alpha virt. eigenvalues	0.66745	0.67005	0.67153	0.67386	0.67422
Alpha virt. eigenvalues	0.67582	0.67807	0.68130	0.68222	0.68317
Alpha virt. eigenvalues	0.68454	0.68574	0.68759	0.69089	0.69184
Alpha virt. eigenvalues	0.69211	0.69223	0.69656	0.69753	0.69967
Alpha virt. eigenvalues	0.70056	0.70318	0.70688	0.70892	0.71244
Alpha virt. eigenvalues	0.71687	0.72239	0.72363	0.73019	0.73219
Alpha virt. eigenvalues	0.73428	0.73498	0.74598	0.74932	0.75256
Alpha virt. eigenvalues	0.75390	0.75401	0.75786	0.76512	0.76814
Alpha virt. eigenvalues	0.76830	0.77121	0.77466	0.77593	0.78714
Alpha virt. eigenvalues	0.78788	0.79059	0.80235	0.80282	0.80352
Alpha virt. eigenvalues	0.81745	0.81956	0.82907	0.82959	0.84288
Alpha virt. eigenvalues	0.84377	0.85770	0.85862	0.87172	0.87377
Alpha virt. eigenvalues	0.88665	0.88956	0.89217	0.89669	0.89919
Alpha virt. eigenvalues	0.90227	0.90528	0.91005	0.91847	0.91848
Alpha virt. eigenvalues	0.92487	0.93036	0.93436	0.93862	0.93868
Alpha virt. eigenvalues	0.94623	0.95925	0.96824	0.97588	0.97593
Alpha virt. eigenvalues	0.98605	0.99295	1.01119	1.01317	1.02216
Alpha virt. eigenvalues	1.03415	1.03763	1.03923	1.04243	1.04464

Alpha virt. eigenvalues	1.04522	1.04735	1.04823	1.05502	1.06112
Alpha virt. eigenvalues	1.06209	1.06615	1.06622	1.08031	1.08231
Alpha virt. eigenvalues	1.08310	1.08343	1.09619	1.09822	1.10897
Alpha virt. eigenvalues	1.10998	1.11468	1.11613	1.12519	1.12629
Alpha virt. eigenvalues	1.12792	1.12978	1.15113	1.15445	1.16779
Alpha virt. eigenvalues	1.17267	1.18155	1.18413	1.19018	1.19063
Alpha virt. eigenvalues	1.19546	1.19883	1.20784	1.20800	1.22100
Alpha virt. eigenvalues	1.22210	1.24403	1.24450	1.27731	1.29447
Alpha virt. eigenvalues	1.29492	1.30099	1.33913	1.34064	1.35434
Alpha virt. eigenvalues	1.38138	1.39295	1.41703	1.43312	1.44514
Alpha virt. eigenvalues	1.45270	1.47474	1.47802	1.48157	1.52026
Alpha virt. eigenvalues	1.52477	1.53160	1.53234	1.57485	1.60286
Alpha virt. eigenvalues	1.67344	1.67354	1.67498	1.67513	1.69422
Alpha virt. eigenvalues	1.70978				

Lowest Excited States

Table S5. A table of the lowest lying 15 excited states where the energy (eV), oscillator strengths (f), most significant transition, % contribution of the transition are provided for each.

<u>ES</u>	Energy (eV)	ſ	<u>Transition</u>	% Contribution
1	0.85	0.6334	$SOMO_{\beta} \rightarrow LUMO_{\beta}$	62.8%
2	1.60	0.0000	$SOMO_{\beta} - 1 \rightarrow LUMO_{\beta}$	58.1%
3	1.61	0.0038	$SOMO_{\beta} - 2 \rightarrow LUMO_{\beta}$	71.5%
4	1.66	0.0000	$SOMO_{\beta} - 3 \rightarrow LUMO_{\beta}$	45.3%
5	1.72	2.0932	$SOMO_{\alpha} \rightarrow LUMO_{\alpha}$	50.6%
6	1.85	0.0000	$SOMO_{\beta} \rightarrow LUMO_{\beta} + 1$	42.5%
7	2.02	0.0003	$SOMO_{\beta} - 4 \rightarrow LUMO_{\beta}$	78.6%
8	2.03	0.0000	$SOMO_{\beta} - 5 \rightarrow LUMO_{\beta}$	89.0%
9	2.11	0.0027	$SOMO_{\beta}^{-} - 6 \rightarrow LUMO_{\beta}^{-}$	68.8%
10	2.11	0.0000	$SOMO_{\beta} - 7 \rightarrow LUMO_{\beta}$	64.4%
11	2.27	0.0061	$SOMO_{\beta} - 8 \rightarrow LUMO_{\beta}$	34.8%
12	2.51	0.0000	$SOMO_{\alpha} - 1 \rightarrow LUMO_{\alpha}$	34.1%
13	2.54	0.0051	$SOMO_{\beta} - 8 \rightarrow LUMO_{\beta}$	23.0%
14	2.62	0.0000	$SOMO_{\beta} - 8 \rightarrow LUMO_{\beta}$	70.7%
15	2.65	0.0035	$SOMO_{\beta} - 10 \rightarrow LUMO_{\beta}$	53.7%

Geometric Images

Figure S28. Two geometric perspectives are given with a top view on the left and a front view on the right.

Simulated UV-Vis Spectra

Figure S29. Simulated UV-visible absorbance spectrum of the neutral $Th_2DHPP+1$ oligomer in gas phase.

BTD₂DHPP Neutral

Cartesian Coordinates

0.96003	3.08174	0.00794
1.11811	1.60909	0.00325
-0.04628	0.73395	-0.00161
-1.26997	1.40247	-0.01405
-1.41919	2.81405	-0.01388
-0.35083	3.70452	0.00921
-2.17604	0.79478	-0.03269
-2.43775	3.20258	-0.05617
3.4207	2.62119	0.01405
2.39014	1.20644	0.00609
2.10082	3.76719	0.01373
-0.49676	5.14878	-0.00249
0.41321	6.09729	-0.51156
-1.67975	5.82353	0.40946
-0.23028	7.3507	-0.42494
1.39618	5.85365	-0.90075
-1.5086	7.17284	0.13325
-2.76375	5.31875	1.18784
-0.05576	8.7044	-0.68683
-2.14399	8.43274	0.23679
-2.53221	4.69847	2.42328
-4.08623	5.47634	0.73186
-1.22537	9.37078	-0.26946
1.04923	9.25265	-1.39862
-3.10879	8.6776	0.67515
	0.96003 1.11811 -0.04628 -1.26997 -1.41919 -0.35083 -2.17604 -2.43775 3.4207 2.39014 2.10082 -0.49676 0.41321 -1.67975 -0.23028 1.39618 -1.5086 -2.76375 -0.05576 -2.14399 -2.53221 -4.08623 -1.22537 1.04923 -3.10879	0.960033.081741.118111.60909-0.046280.73395-1.269971.40247-1.419192.81405-0.350833.70452-2.176040.79478-2.437753.202583.42072.621192.390141.206442.100823.76719-0.496765.148780.413216.09729-1.679755.82353-0.230287.35071.396185.85365-1.50867.17284-2.763755.31875-0.055768.7044-2.143998.43274-2.532214.69847-4.086235.47634-1.225379.370781.049239.25265-3.108798.6776

С	-3.60165	4.21645 3.19077
Н	-1.50682	4.58919 2.78583
С	-5.15663	5.01633 1.49957
Н	-4.26665	5.95516 -0.23462
С	2.36203	8.95251 -0.99081
С	0.84628	10.06486 -2.52119
С	-4.91933	4.3776 2.73031
Н	-3.39272	3.73001 4.14568
Н	-6.18951	5.12908 1.16248
С	3.45072	9.46081 -1.69637
Н	2.52038	8.33437 -0.10367
С	1.93811	10.59958 -3.22195
Н	-0.17122	10.28019 -2.85799
0	-6.03803	3.94594 3.41301
С	3.24519	10.29425 -2.81127
Н	4.47696	9.24072 -1.39375
Н	1.75174	11.23489 -4.0903
С	-5.88967	3.27301 4.6756
0	4.38543	10.76121 -3.43656
Н	-5.4095	3.92713 5.42889
Н	-6.91073	3.02823 5.00329
Н	-5.30419	2.33928 4.56972
С	4.26755	11.62327 -4.58046
Н	5.29853	11.85782 -4.88417
Н	3.74507	11.11875 -5.41646
Н	3.73709	12.56194 -4.32756
С	-1.41815	10.81848 -0.31572
С	-0.41084	11.751 0.14546
С	-2.62558	11.36244 -0.73133
С	-0.67576	13.19455 0.12365
N	0.77476	11.39903 0.64054
С	-2.88359	12.773 -0.73578
Н	-3.4045	10.68465 -1.09221
С	-1.93811	13.6878 -0.33398
N	0.31803	13.96235 0.58077
S	1.61436	12.88041 1.07029
Н	-3.86054	13.12045 -1.08531
Н	-2.11635	14.76457 -0.34239
С	0.04628	-0.73395 -0.00161
С	-1.11811	-1.60909 0.00325
С	1.26997	-1.40247 -0.01405
С	-0.96003	-3.08174 0.00794
Ν	-2.39014	-1.20644 0.00609
С	1.41919	-2.81405 -0.01388

Н	2.17604 -0.79478 -0.03269
С	0.35083 -3.70452 0.00921
Ν	-2.10082 -3.76719 0.01373
S	-3.4207 -2.62119 0.01405
Н	2.43775 -3.20258 -0.05617
С	0.49676 -5.14878 -0.00249
С	-0.41321 -6.09729 -0.51156
Ν	1.67975 -5.82353 0.40946
С	0.23028 -7.3507 -0.42494
Н	-1.39618 -5.85365 -0.90075
С	1.5086 -7.17284 0.13325
С	2.76375 -5.31875 1.18784
N	0.05576 -8.7044 -0.68683
С	2.14399 -8.43274 0.23679
С	2.53221 -4.69847 2.42328
С	4.08623 -5.47634 0.73186
С	1.22537 -9.37078 -0.26946
С	-1.04923 -9.25265 -1.39862
Н	3.10879 -8.6776 0.67515
С	3.60165 -4.21645 3.19077
Н	1.50682 -4.58919 2.78583
С	5.15663 -5.01633 1.49957
Н	4.26665 -5.95516 -0.23462
С	1.41815 -10.81848 -0.31572
С	-2.36203 -8.95251 -0.99081
С	-0.84628 -10.06486 -2.52119
С	4.91933 -4.3776 2.73031
Н	3.39272 -3.73001 4.14568
н	6.18951 -5.12908 1.16248
С	0.41084 -11.751 0.14546
С	2.62558 -11.36244 -0.73133
С	-3.45072 -9.46081 -1.69637
н	-2.52038 -8.33437 -0.10367
С	-1.93811 -10.59958 -3.22195
н	0.17122 -10.28019 -2.85799
0	6.03803 -3.94594 3.41301
С	0.67576 -13.19455 0.12365
N	-0.77476 -11.39903 0.64054
С	2.88359 -12.773 -0.73578
н	3.4045 -10.68465 -1.09221
С	-3.24519 -10.29425 -2.81127
н	-4.47696 -9.24072 -1.39375
н	-1.75174 -11.23489 -4.0903
С	5.88967 -3.27301 4.6756

С	1.93811 -13.6878 -0.33398
Ν	-0.31803 -13.96235 0.58077
S	-1.61436 -12.88041 1.07029
Н	3.86054 -13.12045 -1.08531
0	-4.38543 -10.76121 -3.43656
Н	5.4095 -3.92713 5.42889
Н	6.91073 -3.02823 5.00329
Н	5.30419 -2.33928 4.56972
Н	2.11635 -14.76457 -0.34239
С	-4.26755 -11.62327 -4.58046
Н	-5.29853 -11.85782 -4.88417
Н	-3.74507 -11.11875 -5.41646
Н	-3.73709 -12.56194 -4.32756

Energy Levels

Alpha occ. eigenvalues88.90561 -88.90561 -88.90503 -88.90502 -19.16321
Alpha occ. eigenvalues19.16321 -19.15669 -19.15669 -14.37752 -14.37752
Alpha occ. eigenvalues14.37629 -14.37629 -14.36856 -14.36856 -14.36669
Alpha occ. eigenvalues14.36669 -14.36663 -14.36663 -14.36529 -14.36527
Alpha occ. eigenvalues10.25074 -10.25074 -10.24250 -10.24250 -10.24212
Alpha occ. eigenvalues10.24210 -10.24164 -10.24163 -10.24142 -10.24142
Alpha occ. eigenvalues10.23918 -10.23918 -10.23448 -10.23448 -10.22972
Alpha occ. eigenvalues10.22972 -10.22751 -10.22751 -10.22239 -10.22239
Alpha occ. eigenvalues10.22072 -10.22072 -10.21929 -10.21928 -10.21633
Alpha occ. eigenvalues10.21633 -10.20889 -10.20888 -10.20377 -10.20357
Alpha occ. eigenvalues10.20342 -10.20342 -10.20068 -10.20068 -10.20052
Alpha occ. eigenvalues10.20052 -10.19794 -10.19794 -10.19683 -10.19683
Alpha occ. eigenvalues10.19178 -10.19178 -10.19165 -10.19165 -10.18952
Alpha occ. eigenvalues10.18952 -10.18536 -10.18536 -10.18498 -10.18498
Alpha occ. eigenvalues10.18430 -10.18430 -10.18263 -10.18263 -10.18153
Alpha occ. eigenvalues10.18153 -10.17823 -10.17822 -10.17656 -10.17656
Alpha occ. eigenvalues10.17644 -10.17644 -10.17032 -10.17032 -8.03185
Alpha occ. eigenvalues8.03185 -8.03126 -8.03125 -5.99691 -5.99691
Alpha occ. eigenvalues5.99645 -5.99645 -5.99133 -5.99133 -5.99086
Alpha occ. eigenvalues5.99086 -5.98582 -5.98582 -5.98499 -5.98499
Alpha occ. eigenvalues1.07078 -1.07078 -1.06401 -1.06401 -1.02160
Alpha occ. eigenvalues1.02119 -1.02112 -1.02086 -1.01039 -1.01039
Alpha occ. eigenvalues0.98201 -0.98201 -0.90699 -0.90404 -0.90403
Alpha occ. eigenvalues0.90373 -0.87659 -0.87642 -0.87279 -0.87214
Alpha occ. eigenvalues0.87142 -0.86556 -0.86469 -0.85570 -0.81389
Alpha occ. eigenvalues0.81388 -0.81175 -0.80900 -0.79620 -0.78224
Alpha occ. eigenvalues0.77599 -0.77113 -0.77105 -0.77097 -0.76870
Alpha occ. eigenvalues0.76738 -0.76487 -0.76169 -0.75992 -0.75750
Alpha occ. eigenvalues0.75159 -0.74892 -0.74482 -0.74289 -0.71541

Alpha	occ. eigenvalues	-0.70730	-0.70700	-0.69931	-0.69445	-0.69419
Alpha	occ. eigenvalues	-0.67399	-0.66534	-0.66121	-0.65438	-0.64857
Alpha	occ. eigenvalues	-0.64153	-0.63784	-0.63741	-0.63151	-0.62991
Alpha	occ. eigenvalues	-0.62531	-0.62481	-0.62192	-0.61812	-0.61719
Alpha	occ. eigenvalues	-0.61577	-0.61408	-0.61134	-0.60159	-0.59083
Alpha	occ. eigenvalues	-0.58187	-0.58044	-0.57781	-0.57652	-0.56385
Alpha	occ. eigenvalues	-0.56333	-0.55200	-0.54793	-0.54428	-0.54268
Alpha	occ. eigenvalues	-0.53684	-0.53653	-0.52360	-0.52243	-0.51536
Alpha	occ. eigenvalues	-0.51315	-0.51128	-0.51094	-0.50806	-0.50778
Alpha	occ. eigenvalues	-0.50576	-0.50135	-0.49756	-0.49733	-0.49532
Alpha	occ. eigenvalues	-0.48937	-0.48767	-0.48452	-0.48201	-0.48151
Alpha	occ. eigenvalues	-0.48039	-0.48001	-0.47501	-0.47493	-0.47352
Alpha	occ. eigenvalues	-0.46506	-0.46497	-0.46095	-0.46074	-0.45991
Alpha	occ. eigenvalues	-0.45742	-0.45549	-0.45496	-0.45457	-0.45163
Alpha	occ. eigenvalues	-0.44884	-0.44704	-0.44611	-0.44583	-0.44478
Alpha	occ. eigenvalues	-0.44382	-0.44014	-0.43956	-0.43774	-0.43528
Alpha	occ. eigenvalues	-0.43468	-0.43194	-0.42683	-0.42628	-0.41806
Alpha	occ. eigenvalues	-0.41447	-0.40944	-0.40800	-0.40761	-0.40497
Alpha	occ. eigenvalues	-0.40454	-0.40443	-0.40092	-0.39819	-0.39781
Alpha	occ. eigenvalues	-0.39769	-0.39546	-0.39541	-0.39402	-0.39390
Alpha	occ. eigenvalues	-0.39358	-0.39159	-0.38665	-0.38554	-0.38267
Alpha	occ. eigenvalues	-0.38217	-0.38110	-0.37666	-0.37488	-0.37478
Alpha	occ. eigenvalues	-0.37351	-0.36851	-0.36745	-0.36282	-0.36160
Alpha	occ. eigenvalues	-0.35348	-0.35048	-0.34859	-0.34844	-0.33574
Alpha	occ. eigenvalues	-0.33512	-0.33492	-0.33386	-0.33343	-0.32930
Alpha	occ. eigenvalues	-0.32925	-0.32545	-0.32408	-0.32340	-0.31796
Alpha	occ. eigenvalues	-0.31768	-0.30931	-0.29480	-0.29479	-0.29428
Alpha	occ. eigenvalues	-0.29022	-0.28586	-0.28365	-0.28295	-0.28294
Alpha	occ. eigenvalues	-0.28124	-0.28004	-0.27549	-0.27494	-0.27218
Alpha	occ. eigenvalues	-0.26771	-0.26715	-0.26005	-0.25243	-0.25130
Alpha	occ. eigenvalues	-0.24952	-0.23412	-0.23086	-0.22996	-0.20973
Alpha	occ. eigenvalues	-0.20856	-0.19674	-0.17921		
Alpha	virt. eigenvalues	-0.11460	-0.10629	-0.10383	-0.09385	-0.04464
Alpha	virt. eigenvalues	-0.03499	-0.02672	-0.02543	-0.01972	-0.01820
Alpha	virt. eigenvalues	-0.01742	-0.01723	-0.01651	-0.01606	-0.01550
Alpha	virt. eigenvalues	-0.01516	-0.01335	-0.00244	-0.00238	-0.00084
Alpha	virt. eigenvalues	-0.00012	0.00192	0.01159	0.01173	0.03565
Alpha	virt. eigenvalues	0.04042	0.04051	0.04417	0.04705	0.05074
Alpha	virt. eigenvalues	0.05570	0.05811	0.06159	0.06259	0.06445
Alpha	virt. eigenvalues	0.06702	0.07096	0.07479	0.07610	0.07876
Alpha	virt. eigenvalues	0.08268	0.08606	0.09429	0.09466	0.10143
Alpha	virt. eigenvalues	0.10197	0.10443	0.10444	0.10618	0.10709
Alpha	virt. eigenvalues	0.10880	0.10923	0.10955	0.11033	0.11106
Alpha	virt. eigenvalues	0.11254	0.11910	0.11933	0.12227	0.12234

Alpha virt. eigenvalues	0.12512	0.12572	0.12624	0.12631	0.13013
Alpha virt. eigenvalues	0.13013	0.13086	0.13146	0.13316	0.13361
Alpha virt. eigenvalues	0.13818	0.13887	0.14072	0.14074	0.14218
Alpha virt. eigenvalues	0.14405	0.14603	0.14650	0.14802	0.15334
Alpha virt. eigenvalues	0.15360	0.15771	0.15798	0.16413	0.16462
Alpha virt. eigenvalues	0.16892	0.16953	0.17949	0.18389	0.18483
Alpha virt. eigenvalues	0.19294	0.19816	0.20164	0.20270	0.20948
Alpha virt. eigenvalues	0.21075	0.21810	0.22023	0.22171	0.22343
Alpha virt. eigenvalues	0.22378	0.22451	0.22642	0.22860	0.23151
Alpha virt. eigenvalues	0.23193	0.23591	0.24229	0.24405	0.25785
Alpha virt. eigenvalues	0.25832	0.26059	0.26167	0.26379	0.26637
Alpha virt. eigenvalues	0.26744	0.27153	0.27440	0.27480	0.28444
Alpha virt. eigenvalues	0.28558	0.28875	0.28894	0.29102	0.29113
Alpha virt. eigenvalues	0.29287	0.29467	0.29708	0.29934	0.30064
Alpha virt. eigenvalues	0.30388	0.30633	0.30849	0.30977	0.31038
Alpha virt. eigenvalues	0.31152	0.31566	0.31698	0.31764	0.31994
Alpha virt. eigenvalues	0.32073	0.32513	0.32762	0.32844	0.32858
Alpha virt. eigenvalues	0.33207	0.34143	0.34376	0.34560	0.34733
Alpha virt. eigenvalues	0.35065	0.35257	0.35467	0.35491	0.35943
Alpha virt. eigenvalues	0.36172	0.36228	0.36780	0.37370	0.37377
Alpha virt. eigenvalues	0.37744	0.37809	0.38025	0.38161	0.38545
Alpha virt. eigenvalues	0.38837	0.39006	0.39039	0.39453	0.40153
Alpha virt. eigenvalues	0.40184	0.40389	0.40552	0.41107	0.41234
Alpha virt. eigenvalues	0.41271	0.41426	0.41633	0.42199	0.43221
Alpha virt. eigenvalues	0.43573	0.43654	0.43850	0.44185	0.44235
Alpha virt. eigenvalues	0.44386	0.44657	0.44903	0.44917	0.45164
Alpha virt. eigenvalues	0.45199	0.45288	0.45333	0.45747	0.45764
Alpha virt. eigenvalues	0.45986	0.46111	0.46119	0.46196	0.46379
Alpha virt. eigenvalues	0.46427	0.46583	0.46686	0.46700	0.46734
Alpha virt. eigenvalues	0.47410	0.47527	0.47840	0.47857	0.47956
Alpha virt. eigenvalues	0.47962	0.48380	0.48499	0.48502	0.48528
Alpha virt. eigenvalues	0.48993	0.49023	0.49212	0.49463	0.49555
Alpha virt. eigenvalues	0.49710	0.49786	0.50073	0.50274	0.50444
Alpha virt. eigenvalues	0.50768	0.51197	0.51348	0.51518	0.51751
Alpha virt. eigenvalues	0.51915	0.52362	0.52708	0.52739	0.52850
Alpha virt. eigenvalues	0.52881	0.53016	0.53305	0.53405	0.54004
Alpha virt. eigenvalues	0.54475	0.54491	0.54673	0.54840	0.54888
Alpha virt. eigenvalues	0.55208	0.55630	0.55833	0.56003	0.56099
Alpha virt. eigenvalues	0.56288	0.56290	0.56592	0.56698	0.57079
Alpha virt. eigenvalues	0.57151	0.57401	0.57664	0.57837	0.58016
Alpha virt. eigenvalues	0.58059	0.58710	0.58812	0.59006	0.59186
Alpha virt. eigenvalues	0.59236	0.59312	0.59785	0.59854	0.60111
Alpha virt. eigenvalues	0.60376	0.61108	0.61337	0.61411	0.61588
Alpha virt. eigenvalues	0.61753	0.62084	0.62368	0.62435	0.62582
-					

Alpha virt. eigenvalues	0.62859	0.63385	0.63508	0.63515	0.63620
Alpha virt. eigenvalues	0.63995	0.64215	0.64231	0.64238	0.64581
Alpha virt. eigenvalues	0.64593	0.64840	0.65296	0.65312	0.65380
Alpha virt. eigenvalues	0.65488	0.65542	0.65600	0.65944	0.65953
Alpha virt. eigenvalues	0.66156	0.66200	0.66330	0.66571	0.66647
Alpha virt. eigenvalues	0.66663	0.66731	0.66826	0.67157	0.67207
Alpha virt. eigenvalues	0.67229	0.67419	0.67576	0.67594	0.67871
Alpha virt. eigenvalues	0.67931	0.68212	0.68285	0.68414	0.68648
Alpha virt. eigenvalues	0.68681	0.68841	0.68853	0.68888	0.68960
Alpha virt. eigenvalues	0.69375	0.69473	0.69548	0.70031	0.70049
Alpha virt. eigenvalues	0.70128	0.70167	0.70489	0.70628	0.70668
Alpha virt. eigenvalues	0.70830	0.70912	0.70931	0.71067	0.71085
Alpha virt. eigenvalues	0.71197	0.71400	0.71962	0.72031	0.72206
Alpha virt. eigenvalues	0.72583	0.72813	0.72874	0.72919	0.72981
Alpha virt. eigenvalues	0.73195	0.73200	0.73793	0.73995	0.74101
Alpha virt. eigenvalues	0.74161	0.74333	0.74744	0.74934	0.75202
Alpha virt. eigenvalues	0.75516	0.75724	0.75898	0.75940	0.76284
Alpha virt. eigenvalues	0.76323	0.76480	0.76514	0.77018	0.77424
Alpha virt. eigenvalues	0.77763	0.77921	0.78103	0.78368	0.78622
Alpha virt. eigenvalues	0.78737	0.78880	0.79147	0.79386	0.79467
Alpha virt. eigenvalues	0.79767	0.79896	0.80187	0.80319	0.80692
Alpha virt. eigenvalues	0.80790	0.80908	0.81061	0.81263	0.81439
Alpha virt. eigenvalues	0.81963	0.82250	0.82722	0.83000	0.83373
Alpha virt. eigenvalues	0.83525	0.84244	0.84344	0.84348	0.84497
Alpha virt. eigenvalues	0.84770	0.85030	0.85125	0.85344	0.85656
Alpha virt. eigenvalues	0.85674	0.86084	0.86535	0.86695	0.87094
Alpha virt. eigenvalues	0.87252	0.87697	0.87786	0.88535	0.88619
Alpha virt. eigenvalues	0.89574	0.90052	0.90101	0.90427	0.90826
Alpha virt. eigenvalues	0.91122	0.91323	0.91469	0.91937	0.91978
Alpha virt. eigenvalues	0.92403	0.92753	0.93569	0.93714	0.94195
Alpha virt. eigenvalues	0.94261	0.94899	0.95059	0.96214	0.96353
Alpha virt. eigenvalues	0.97293	0.97612	0.98025	0.98255	0.98856
Alpha virt. eigenvalues	0.98856	1.00169	1.00351	1.01366	1.01380
Alpha virt. eigenvalues	1.01481	1.01722	1.02195	1.02317	1.03361
Alpha virt. eigenvalues	1.03415	1.05575	1.06059	1.07330	1.07461
Alpha virt. eigenvalues	1.07782	1.08316	1.09396	1.09685	1.10200
Alpha virt. eigenvalues	1.10270	1.10540	1.10734	1.10795	1.11057
Alpha virt. eigenvalues	1.11311	1.11337	1.12285	1.12315	1.12754
Alpha virt. eigenvalues	1.13105	1.13341	1.13700	1.14470	1.14750
Alpha virt. eigenvalues	1.15111	1.15331	1.16204	1.16524	1.16893
Alpha virt. eigenvalues	1.16910	1.17475	1.17584	1.17977	1.18197
Alpha virt. eigenvalues	1.18489	1.18497	1.19358	1.19720	1.20458
Alpha virt. eigenvalues	1.20704	1.21054	1.21591	1.22354	1.22514
Alpha virt. eigenvalues	1.23339	1.23652	1.24710	1.24815	1.25006

Alpha virt. eigenvalues	1.25454	1.27056	1.27659	1.29151	1.29464
Alpha virt. eigenvalues	1.29848	1.29988	1.30527	1.30576	1.31253
Alpha virt. eigenvalues	1.31676	1.32224	1.32647	1.33109	1.34155
Alpha virt. eigenvalues	1.35958	1.36545	1.38617	1.38651	1.41521
Alpha virt. eigenvalues	1.41542	1.42279	1.42324	1.43259	1.43444
Alpha virt. eigenvalues	1.44779	1.47077	1.47980	1.48824	1.49091
Alpha virt. eigenvalues	1.49966	1.50654	1.50691	1.53032	1.53119
Alpha virt. eigenvalues	1.53153	1.54420	1.56093	1.56133	1.57486
Alpha virt. eigenvalues	1.58142	1.58763	1.58780	1.60318	1.63673
Alpha virt. eigenvalues	1.68681	1.68811	1.73495	1.73496	1.74358
Alpha virt. eigenvalues	1.74362	1.78168	1.78209		

Lowest Excited States

Table S6. A table of the lowest lying 15 excited states where the energy (eV), oscillator strengths (f), most significant transition, % contribution of the transition are provided for each.

<u>, ,,</u>	0	,		
ES	Energy (eV)	ſ	<u>Transition</u>	% Contribution
1	1.48	1.3047	$HOMO \rightarrow LUMO$	100%
2	1.72	0.0000	$HOMO \rightarrow LUMO + 1$	84.2%
3	1.77	0.0100	$HOMO \rightarrow LUMO + 2$	100%
4	1.89	0.0000	$HOMO \rightarrow LUMO + 3$	83.3%
5	1.97	0.0011	$HOMO - 1 \rightarrow LUMO$	73.0%
6	2.14	0.0048	$HOMO - 2 \rightarrow LUMO$	54.1%
7	2.18	0.0006	$HOMO - 3 \rightarrow LUMO$	45.6%
8	2.20	0.0348	$HOMO - 1 \rightarrow LUMO + 1$	57.2%
9	2.23	0.0007	$HOMO - 1 \rightarrow LUMO + 2$	47.1%
10	2.32	0.0059	$HOMO - 2 \rightarrow LUMO + 2$	31.8%
11	2.34	0.0003	$HOMO - 3 \rightarrow LUMO + 2$	30.9%
12	2.43	0.0026	$HOMO - 1 \rightarrow LUMO + 3$	100%
1.2	2.64	0.0002	$HOMO - 3 \rightarrow LUMO + 2$	33.5%
13	2.64	0.0002	$HOMO - 2 \rightarrow LUMO + 1$	34.1%
14	2.65	0.0010	$HOMO - 3 \rightarrow LUMO + 1$	37.8%
15	2.78	0.0001	$HOMO - 2 \rightarrow LUMO + 3$	60.9%

Geometric Images

Figure S30. Two geometric perspectives are given with a top view on the left and a front view on the right.

Simulated UV-Vis Spectra

Figure S31. Simulated UV-visible absorbance spectrum of the neutral BDT₂DHPP oligomer in gas phase.

References

- Bartlett, K. A.; Charland-Martin, A.; Lawton, J.; Tomlinson, A. L.; Collier, G. S. Azomethine-Containing Pyrrolo[3,2-b]Pyrrole Copolymers for Simple and Degradable Conjugated Polymers. *Macromol Rapid Commun* 2024, 45 (1), 2300220. https://doi.org/10.1002/marc.202300220.
- (2) Bell, K.-J. J.; Sabury, S.; Phan, V.; Wagner, E. M.; Hawks, A. M.; Bartlett, K. A.; Collier, G. S. Synthesis of 1,4-Dihydropyrrolo[3,2-b]Pyrrole-Containing Donor–Acceptor Copolymers and Their Optoelectronic Properties. *J Poly Sci* 2024, *62*, 2975. https://doi.org/10.1002/pol.20240093.