Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry

Electronic Supplementary Information

A molecular acceptor with absorption wavelength of >1400 nm for short-wavelength infrared organic photodetectors

Tingting Yuan,^{ab} Wenliang Chen,^{ab} Junhui Miao*^a and Jun Liu*^{ab} ^aState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China. ^bUniversity of Science and Technology of China, Hefei, 230026, China. E-mail: jhmiao@ciac.ac.cn; liujun@ciac.ac.cn.

Contents

- 1. Experimental details
- 2. Syntheses and characterizations
- 3. Thermal properties
- 4. Density functional theory (DFT) calculations

5. nuclear independent chemical shift (NICS) values of the aromatic rings of

BTQ-1 and BTQ-1-NQC

6. Morphology of the blend film

7. Absorption data of the PTB7-Th:BTQ-1 blend film

8. 2D-GIWAXS pattern and the corresponding in-plane and out-of-plane linecuts of PTB7-Th

9. OPD devices fabrication and measurement

10. OPD device performance

11. Hole/electron-only devices fabrication and hole/electron mobility measurement

- 12. Photocurrent *J-V* graph of the OPD device
- 13. The stability of the material and the OPD device
- 14. The summary table of ultra-narrow band gap acceptor materials for OPD
- 15. ¹H NMR , ¹³C NMR and mass spectra

1. Experimental details

General. ¹H NMR and ¹³C NMR spectra were measured with a Bruker AV-400 MHz NMR spectrometer at room temperature. Elemental analysis was recorded on a VarioEL elemental analyzer. 2D grazing incidence wide angle X-ray scattering (2D-GIWAXS) were measured at the BL02U2 beamline at Shanghai Synchrotron Radiation Facility. Samples of pure materials or blends were prepared on silicon substrates. UV-vis absorption spectra (in CF solution and as thin films) were obtained with a Shimadzu UV-3600 spectrometer. Cyclic voltammogram (CV) measurements were performed on a CHI660a electrochemical workstation using glassy carbon as the working electrode, Pt wire as the counter electrode, and a standard calomel reference electrode in a 0.1 mol L⁻¹ tetrabutylammonium hexafluorophosphate (Bu₄NPF₆) acetonitrile solution. The materials were casted on the working electrode for measurements and ferrocene as an internal reference at a scan rate of 100 mV s⁻¹. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels of the materials were estimated by the equations: $E_{\text{HOMO/LUMO}} = -(4.80 + E_{\text{onset}}^{\text{ox}}/E_{\text{onset}}^{\text{red}}) \text{ eV}$. The AFM images were recorded using a SPA300HV (Seiko Instruments, Inc., Japan) in tapping mode. The thermogravimetric analysis (TGA) was performed on a Perkin-Elmer 7 instrument at a heating rate of 10 °C min⁻¹ under purified nitrogen gas (N₂) flow. The decomposition temperature (T_d) corresponded to 5% loss of weight.

2. Syntheses and characterizations

Compound 2: To a solution of compound 1 (0.6 g, 0.77 mmol) in anhydrous tetrahydrofuran (70 mL) at -78 °C was added dropwise LDA (2 M in hexane, 0.82 mL, 1.63 mmol). After the mixture being stirred at -78 °C for 3 h, Bu₃SnCl (2.0 g, 10.1 mmol) was added under argon. The mixture was stirred overnight from -78 °C to 25

°C. After adding KF aqueous solution, the mixture was extracted using ether. The solution was dried using Na_2SO_4 , and then concentrated under reduced pressure to afford compound **2** (1.0 g) as a yellow oil. Without any further purification, the product was used into the following reaction.

Compound 3: Starting materials of compound **2** (1.0 g, 0.74 mmol), 5-bromo-4-((2-ethylhexyl)oxy)thiophene-3-carbonitrile (0.54 g, 1.7 mmol), Pd₂(dba)₃ (67.7 mg, 0.07 mmol) and P(o-tol)₃ (89.96 mg, 0.29 mmol) were placed in a two-necked flask under argon, and then dried toluene (66 mL) was added. After the mixture being stirred at 110 °C for 12 h. The reaction mixture was poured into water, then extracted with dichloromethane three times. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. Finally, the residue was purified by silica gel chromatography (petroleum ether/dichloromethane = 1:1, v/v) to afford compound **3** (0.46 g, yield: 47.17%) as a orange oily liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.72 (s, 2H), 7.59 (s, 2H), 4.61 (d, J=5 Hz, 4H), 4.27 (d, J=5 Hz, 4H), 2.08 (m, 2H), 1.91 (m, 2H), 1.57 – 1.69 (m, 12H), 1.46 – 1.54 (m, 4H), 1.41 – 1.46 (m, 20H), 1.01 (t, J = 7.5 Hz, 12H), 0.92 (t, J = 8.5 Hz, 12H), 0.61 – 0.67 (m, 12H).

Compound 4: To a solution of compound 4 (0.46 g, 0.35 mmol) in anhydrous tetrahydrofuran (25 mL) at -78 °C was added dropwise LDA (2 M in hexane, 0.37 mL, 0.73 mmol). After the mixture being stirred at -78 °C for 3 h, Bu₃SnCl (0.26 g, 0.80

mmol) was added under argon. The mixture was stirred overnight from -78 °C to 25 °C. After adding KF aqueous solution, the mixture was extracted using ether. The solution was dried using Na₂SO₄, and then concentrated under reduced pressure to afford compound **4** (0.67 g) as a yellow oil. Without any further purification, the product was used into the following reaction.

BTQ-1: Starting materials of compound 4 (0.67 g, 0.35 mmol), 2-(3-bromo-4oxonaphthalen-1(4H)-ylidene)malononitrile (0.22 g, 0.77 mmol) and Pd(PPh₃)₄ (40.4 mg, 0.03 mmol) were placed in a two-necked flask under argon, and then dried toluene (20 mL) was added. After the mixture being stirred at 110 °C for 12 h. The reaction mixture was poured into water, then extracted with dichloromethane three times. The combined organic phase was washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuum. Finally, the residue was purified by silica gel chromatography (petroleum ether/dichloromethane = 1:1, v/v) to afford BTQ-1 (0.31 g, yield: 52.31%) as a orange oily liquid. ¹H NMR (500 MHz, CDCl₃) δ 8.85 (d, J=10 Hz, 4H), 8.36 (d, J=5 Hz, 2H), 7.83 - 7.88 (m, 4H), 7.79 (s, 2H), 4.65 (m, 4H), 4.35 (d, J=10 Hz, 4H), 2.15 (m, 2H), 2.01 (m, 2H), 1.51 – 1.76 (m, 12H), 1.35 - 1.48 (m, 12H), 0.92 - 1.08 (m, 36H), 0.64 - 0.70 (m, 12H). ¹³C NMR (126) MHz, CDCl₃) δ 118.82, 154.68, 152.00, 147.49, 142.28, 137.00, 134.54, 134.35, 134.05, 132.67, 131.24, 130.36, 129.91, 129.41, 129.07, 128.26, 126.43, 125.59, 125.31, 150.05, 114.44, 114.19, 112.95, 112.41, 105.85, 84.62, 78.39, 55.35, 40.61, 38.77, 31.58, 30.21, 29.14, 27.98, 25.36, 23.61, 23.17, 22.80, 22.50, 14.20, 14.00, 13.78, 11.23. MS (MALDI-TOF): Calculated for C₉₄H₉₆N₁₀O₄S₇ [M⁺], 1652.6; found, 1652.6.

3. Thermal properties

Figure S1. TGA curve of BTQ-1 under N₂ atmosphere at a scan rate of 10 °C min⁻¹. The T_d of BTQ-1 are 308 °C, respectively.

Table S1. Thermal properties and opto-electronic properties of BTQ-1.

Compound	<i>T</i> _d (°C)	λ_{\max}^{sol} (nm)	$\lambda_{\max}^{\text{film}}$ (nm)	$E_{\rm g}^{\rm opt a)}$ (eV)	E _{LUMO} ^{b)} (eV)	<i>E</i> _{НОМО} ^{b)} (eV)	$\mu_e{}^{ m c)}$ (cm ² V ⁻¹ s ⁻¹)
BTQ-1	308	899	1009	0.79	-4.35	-5.29	2.85×10^{-4}

^{a)} Calculated with the onset absorption wavelength in film;

^{b)} Calculated from onset oxidation/reduction potentials in CV;

^{c)} Measured by the SCLC method.

4. Density functional theory (DFT) calculations

The molecular geometry and wave function distribution of frontier molecular orbitals were calculated using the B3LYP method with 6-31G(d) basis set. To simplify the calculation, the branched alkyl chains were replaced with methyl groups. All visualizations obtained from computed results were generated by the GaussianView 6 program.

5. nuclear independent chemical shift (NICS) values of the aromatic rings of BTQ-1 and BTQ-1-NQC

Figure S2. Nucleus-independent chemical shifts

6. Morphology of the blend film

Figure S3. AFM height image of the BHJ film.

The PTB7-Th:BTQ-1 blend film exhibited a uniform surface with a low rootmean-square (RMS) roughness of 0.976 nm.

7. Absorption data of the PTB7-Th:BTQ-1 blend film

Figure S4. Absorption data of the PTB7-Th:BTQ-1 blend film.

8. 2D-GIWAXS pattern and the corresponding in-plane and out-of-plane linecuts of PTB7-Th

Figure S5. 2D-GIWAXS pattern and the corresponding in-plane and out-of-plane linecuts of PTB7-Th

Table S2. GIWAXS characterization data of the BTQ-1, PTB7-Th and PTB7-Th:BTQ-1 films.

		(100)				(010)			
Film	Direction	Location [Å ⁻¹]	d-spacing [Å]	FWHM [Å ⁻¹]	CCL [Å]	Location [Å ⁻¹]	d-spacing [Å]	FWHM [Å ⁻¹]	CCL [Å]
BTQ-1	In-plane	0.36	17.45	0.137	41.3				
	Out-of-plane					1.70	3.70	0.262	21.6
PTB7-Th	In-plane	0.29	21.67	0.066	85.7				
	Out-of-plane	0.39	16.11	0.141	40.1	1.57	4.00	0.170	33.3
PTB7-Th:BTQ-1	In-plane	0.29	21.67	0.092	61.5				
	Out-of-plane	0.32	19.63	0.091	62.1	1.69	3.72	0.248	22.8

9. OPD devices fabrication and measurement

The OPD devices were fabricated with the structure of ITO/ZnO/active layer/MoO₃/Al. ITO glass substrates were cleaned in an ultrasonic bath with deionized water, acetone, and isopropyl alcohol, and then dried at 125 °C for 30 min. After being treated with ultraviolet–ozone for 15 min, ZnO layers (ca. 30 nm) were spin-coated at 5000 r min⁻¹ onto the cleaned ITO glasses from the ZnO precursor solution, and then baked at 200 °C for 60 min in air. The ZnO precursor was synthesized by dissolving zinc acetate dehydrate (200 mg) and ethanolamine (65 mg) in 2 mL 2-methoxyethanol under vigorous stirring for 10 h in air. All of the substrates

were placed into a nitrogen-filled glove box. Subsequently, PTB7-Th:BTQ-1 (1:1.2 weight ratio) based blends were dissolved in CF with a concentration of 15.0 mg/mL. The solutions were stirred at 55 °C for 4 h and then spin-coated onto the substrates at room temperature to obtain the active layers. And then, the active layers were thermal annealed at 110 °C for 10 min. After that, the device fabrication was completed by thermally evaporating MoO₃ (15 nm) and Al (100 nm) under vacuum at a pressure of 2×10^{-4} Pa. The active area of each device was 8 mm².

The current density (*J-V*) curve of the OPDs was measured by the computercontrolled Keithley 2400 source meter. Simulated solar light illumination was provided by XES-40S2-CE class solar simulator (Japan, SAN-EI Electric Co., Ltd). The EQE data was collected using the CEL-PD291 photodetection performance test system. The LFN-2000 was used to analyze the noise current, the CEL-PD291 light detection performance test system and the RIGOL DS1102 digital oscilloscope were used to analyze the frequency response characteristics.

10. OPD device performance

D :	R	EQE	S_n	D^{*}	$J_{ m d}$	LDR	τ_r/τ_f
Device	(mA W ⁻¹)	(%)	(A Hz ^{-1/2})	(Jones)	(A cm ⁻²)	LDR (dB)	(µs)
PTB7-Th:BTQ-1	2 (0/040	0.40/0.40		3.42 × 10 ⁹ /940			
	3.00/940 nm	0.48/940 nm	2.010-12	nm	2.0410-8	07	02/50
	0.46/1210	0.04/1210	3.0×10^{-15}	$4.3 \times 10^{8}/1310$		9/	93/38
	0.46/1310 nm	0.04/1310 nm		nm			

Table S3. OPD characteristics

11. Hole/electron-only devices fabrication and hole/electron mobility measurement

Hole-Only and Electron-Only Devices: The hole-only device structure is ITO/PEDOT:PSS/PTB7-Th:BTQ-1/MoO₃/Al and the electron-only device structure is ITO/ZnO/PTB7-Th:BTQ-1/PFN-Br/Al.

The current-voltage curves in the range of 0-8 V were recorded using a computer-controlled Keithley 2400 source meter, and the results were fitted to a space-charge limited function:

$$J = \frac{9}{8}\varepsilon_r \varepsilon_0 \mu \frac{V^2}{L^3} \exp\left(0.89\beta \frac{\sqrt{V}}{\sqrt{L}}\right)$$

where J is the current density, ε_0 is the permittivity of free space, ε_r is the relative permittivity of 3 for molecules, μ is the zero-field mobility, V is the potential across the device ($V = V_{applied} - V_{bias} - V_{series}$), L is the thickness of active layer, and β is the field-activation factor. The series and contact resistance (V_{series}) of the device (10–15 Ω) were measured using blank device of ITO/ZnO/MoO₃/Al. The range of 0-4 V was used to extract the mobility values.

Figure S6. *J*–*V* curves and SCLC fittings the (a) hole-only devices based on PTB7-Th film; (b) the electron-only devices and (c) the hole-only devices based on PTB7-Th:BTQ-1 blend.

12. Photocurrent J-V graph of the OPD device

Figure S7. Photocurrent J-V graph of the OPD device.

13. The stability of materials and OPD devices

The intensity of the maximum absorption peak in the infrared region of the BTQ-1 film, both in air and under heating conditions, did not change significantly, indicating that the film exhibits relatively good air stability and thermal stability.

Figure S8. (a) Absorption spectra of BTQ-1 stored in air for different times and (b) the decay curve of the maximum absorption peak in the infrared region; (c) Absorption spectra of BTQ-1 heated at 110 °C for different times and the (d) decay curve of the maximum absorption peak in the infrared region.

We tested the air stability of the OPD device based on PTB7-Th:BTQ-1. Figure S9 shows the change curve of the dark current and normalized photocurrent stored in air for 0 min~600 min. The dark current exhibited relatively high stability and remained largely unchanged. However, the photocurrent decreased to 80 % of the initial value at 240 min. This decrease in photocurrent may be due to changes in the phase-separated morphology of the optimized active layer upon exposure to air, which in turn affects carrier transport and deteriorates device performance.

Figure S9. Stability of the J_d and normalized J_{sc} of OPD after storage in air atmosphere for different times.

14. The summary table of ultra-narrow band gap acceptor materials for OPD

Active layers	$E_{\rm g}^{\rm opt} ({\rm eV})$	Bias (V)	$J_{\rm d}$ (A cm ⁻²)	R (A W ⁻¹)	D^* (Jones)	Reference
PBDB-T/DO-4F(thick)	1.24	0	$8.6 imes 10^{-10}$	0.50/850 nm	$3.05 \times 10^{13[b]}$	[1]
D18/FM-8F	1.24	-5	5.2×10^{-7}	0.46/970 nm	1.44×10^{12}	[2]
PTB7-Th/YOR1	1.24	-0.1	1.58×10^{-10}	0.14/950 nm	$1.29 imes 10^{12}$	[3]
PBDB-T/FM2	1.22	-0.5	6.45×10^{-9}	0.45/880 nm	1.01×10^{13}	[4]
PM6/PDTTYM	1.22	0	3.9×10^{-9}	0.48/900 nm	$1.31 \times 10^{13[b]}$	[5]
P3HT/TPBT-OR	1.20	-0.1	3.57×10^{-8}	0.084/850 nm	6.32 × 10 ¹¹	[6]
PM6/PDTTIC-4F(thick)	1.20	0	1.64×10^{-9}	0.48/920 nm	$2.40 \times 10^{13[b]}$	[7]
PM6/O4TFIC	1.20	0	$8.3\times10^{-5[c]}$	0.50/890 nm	9.0×10^{11}	[8]
PTB7-Th:CO1-4F	1.20	-3	8.0×10^{-5}	0.52/920 nm	$2.6 imes 10^{10}$	[9]
PBDB-T/BPPT-4Cl	1.19	0	$2.1 \times 10^{-15[a]}$	0.34/870 nm	2.2×10^{13}	[10]
PTB7-Th/CO1-4Cl	1.19	-2	7×10^{-9}	0.5/960 nm	$3.13 \times 10^{13[b]}$	[11]
PTB7-Th:BFIC	1.18	0	4.4×10^{-11}	>0.3/710~950 nm	5.46×10^{13}	[12]
PCE10/YZ1	1.18	0	5.3×10^{-11}	0.27/1000 nm	$1.4 imes 10^{13}$	[13]
PCE10/BTPV-4F-eC9	1.18	0	$4.65 imes 10^{-10}$	0.56/900 nm	1.14 × 10 ¹³ ^[b] /1030 nm	[14]
PTB7-Th/tSPT-4F	1.17	-0.1	4.52×10^{-10}	0.40/1010 nm	1.25 × 10 ¹³	[15]
PTB7-Th/CBT	1.14	-0.5	5.22×10^{-8}	0.455/880 nm	3.29×10^{12}	[16]
PTB7-Th/COTH	1.13	-0.5	3.34×10^{-6}	0.26/1000 nm	$2.74 \times 10^{11[b]}$	[17]
PTB7-Th/COT-Oct	1.13	-0.5	8.18 × 10–9	0.24/1000 nm	$1.49 \times 10^{12[b]}$	[18]
PTB7-Th/NTQ	111	-0.1	1.5×10^{-7}	0.24/970 nm	3.72 × 10 ^{12 [b]} /1000 nm	[19]
PBDT-TT/DPPSe-4Cl/Y6	1.11	-0.1	1.0×10^{-9}	0.18/940 nm	$1.0\times10^{13\text{[b]}}$	[20]
PTB7-Th/COTIC-4F	1.10	0	1.4×10^{-8}	0.37/995 nm	$1.7\times10^{\rm 11[b]}$	[9]

Table S4. Ultra-narrow band gap acceptor materials for OPD

PBDB-T/OTB4	1.09	0	6.40×10^{-10}	0.036/1180 nm	2.98×10^{11}	[21]
PTB7-Th/COB	1.08	-0.5	$5.22 imes 10^{-8}$	0.37/1050 nm	$2.68 imes 10^{12}$	[16]
PCE10/TPA-4F	1.08	-0.1	2.61×10^{-10}	0.25/1100 nm	2.67×10^{13}	[22]
PCE10/FB-C6	1.07	-0.1	4.59×10^{-8}	0.29/970 nm	$4.94 imes 10^{11}$	[23]
PTB7-Th/COTCN2	1.05	-0.5	$1.08 imes 10^{-7}$	0.23/1000 nm	$1.18 imes 10^{12}$	[17]
PTB7-Th/L2	1.03	-1	$1.2\times10^{-13[a]}$	0.09/980 nm	1.50×10^{11}	[24]
PTB7-Th/ATT-X-F _{in}	1.01	0	$6.19 \times 10^{-15[a]}$	0.53/1110 nm	$1.71 \times 10^{13[b]}$	[25]
PDPPDTP/TPCTO-2F	1.00	0	$9.1 \times 10^{-14[a]}$	0.106/1060 nm	2.3×10^{11}	[26]
PCE10/BDP4Cl	1.00	0	$3.58 imes 10^{-10}$	0.17/1100 nm	3.81×10^{12}	[27]
PBDT-TT:TBzIC	0.97	0	2.40×10^{-10}	0.23/1100 nm	2.55×10^{13}	[28]
PTB7-Th/TTD(DTC-2FIC) ₂	0.95	-0.5	2.02×10^{-7}	0.0095/1100 nm	1.1×10^{11}	[29]
PCE10/COTIC-4Cl/PC71BM	0.95	-0.1	1.1×10^{-8}	0.35/1050 nm	$5 imes 10^{12}$	[30]
PTB7-Th/Y-QC4F	0.83	0	$1.47 imes 10^{-14} {}^{[a]}$	0.12/1200 nm	$1.68 \times 10^{12} / 1160$ nm	[31]

[a] Noise current. [b] Shot-noise-limited specific detectivity. [c] Measured at -2 V bias

Figure S10. ¹H NMR of 3.

Figure S11. ¹H NMR, ¹³C NMR and mass spectra of BTQ-1.

References

- Y. Xu, T. Zhang, H. Yao, J. Wang, P. Bi and J. Hou, *J. Energy Chem.*, 2022, 72, 388-394.
- [2] X. Zhu, Y. Zhang, H. Li, Y. Zhang, J. Miao, J. Liu and L. Wang, *Sci. Bul.*, 2024, 69, 2679-2682.
- [3] J.-W. Ha, A. Y. Lee, H. J. Eun, J.-H. Kim, H. Ahn, S. Park, C. Lee, D. W. Seo, J. Heo, S. C. Yoon, S.-J. Ko and J. H. Kim, *ACS Nano*, 2023, 17, 18792-18804.
- [4] Y. Zhang, Y. Yu, X. Liu, J. Miao, Y. Han, J. Liu and L. Wang, *Adv. Mater.*, 2023, 35, 2211714.
- [5] Y. Zheng, Y. Chen, Y. Cao, F. Huang, Y. Guo and X. Zhu, ACS Mater. Lett., 2022, 4, 882-890.
- [6] S. Zhong, H. Chen, J. Yi, T. Yang, Z. Gan, X. Su, M. Li, Z. Zhong, F. Peng and L. Ying, Org. Electron., 2022, 109, 106610.
- [7] Y. Chen, Y. Zheng, Y. Jiang, H. Fan and X. Zhu, J. Am. Chem. Soc., 2021, 143, 4281-4289.
- [8] M. Babics, H. Bristow, W. Zhang, A. Wadsworth, M. Neophytou, N. Gasparini and I. McCulloch, J. Mater. Chem. C, 2021, 9, 2375-2380.
- [9] J. Lee, S.-J. Ko, H. Lee, J. Huang, Z. Zhu, M. Seifrid, J. Vollbrecht, V. V. Brus, A. Karki, H. Wang, K. Cho, T.-Q. Nguyen and G. C. Bazan, ACS Energy Lett.,

2019, 4, 1401-1409.

- [10] W. Wang, X. Miao, G. Cai, L. Ding, Y. Li, T. Li, Y. Zhu, L. Tao, Y. Jia, Y. Liang, X. Lu, Y. Fang, Y. Yi and Y. Lin, *Adv. Mater.*, 2022, 34, 2201600.
- [11] J. Huang, J. Lee, J. Vollbrecht, V. V. Brus, A. L. Dixon, D. X. Cao, Z. Zhu, Z. Du, H. Wang, K. Cho, G. C. Bazan and T.-Q. Nguyen, *Adv. Mater.*, 2020, 32, 1906027.
- [12]Y. Zhang, Q. Wei, Z. He, Y. Wang, T. Shan, Y. Fu, X. Guo and H. Zhong, ACS Appl. Mater. Interfaces, 2022, 14, 31066-31074.
- [13]Y. Xia, C. Geng, X. Bi, M. Li, Y. Zhu, Z. Yao, X. Wan, G. Li and Y. Chen, Adv. Opt. Mater., 2024, 12, 2301518.
- [14] T. Liu, Z. Jia, Y. Song, N. Yu, Q. Lin, C. Li, Y. Jia, H. Chen, S. Wang, Y. Wei, Y. Lin, F. Huang, Z. Tang, Y. Li, L. Meng and H. Huang, *Adv. Funct. Mater.*, 2023, 33, 2301167.
- [15]L. Shao, L. Hong, Y. Cao, H. Tang, Y. Huang, X. Xia, Y. Bai, M. Dong, X. Zhang, X. Lu, X. Yang, C. Liu, F. Huang and Y. Cao, *Adv. Opt. Mater.*, 2023, 11, 2202823.
- [16]U.-H. Lee, B. Park, S. Rhee, J.-W. Ha, D. R. Whang, H. J. Eun, J. H. Kim, Y. Shim, J. Heo, C. Lee, B. J. Kim, S. C. Yoon, J. Lee and S.-J. Ko, *Adv. Opt. Mater.*, 2023, **11**, 2300312.
- [17] J.-W. Ha, H. J. Eun, B. Park, H. Ahn, D. R. Hwang, Y. S. Shim, J. Heo, C. Lee, S. C. Yoon, J. H. Kim and S.-J. Ko, *Adv. Funct. Mater.*, 2023, 33, 2211486.
- [18]K. Cho, J.-W. Ha, M. Nam, C. Lee, S. J. You, A. Y. Lee, S. C. Yoon, M. Han, J. H. Kim, S.-J. Ko and D.-H. Ko, *Adv. Funct. Mater.*, 2024, 34, 2400676.
- [19]S. Deng, L. Zhang, J. Zheng, J. Li, S. Lei, Z. Wu, D. Yang, D. Ma and J. Chen, Adv. Opt. Mater., 2022, 10, 2200371.
- [20] Y. Wang, M. Yang, B. Yin, B. Wu, G. Liu, S. Jeong, Y. Zhang, C. Yang, Z. He,
 F. Huang, Y. Cao and C. Duan, *ACS Appl. Mater. Interfaces*, 2024, 16, 66846-66856.
- [21]J. Xu, Y. Zhang, J. Liu and L. Wang, Angew. Chem. Int. Ed., 2023, 62, e202310838.

- [22]L. Shao, J. Yang, Y. Huang, Y. Cao, J. Jing, X. Qin, X. Yang, H. Tang, C. Liu, F. Huang and Y. Cao, *Chem. Mater.*, 2024, 36, 5775-5787.
- [23]Y. Wang, J. Wang, J. Miao, J. Liu and L. Wang, CCS Chemistry, 2024, 6, 2794-2803.
- [24] T. Li, G. Hu, L. Tao, J. Jiang, J. Xin, Y. Li, W. Ma, L. Shen, Y. Fang and Y. Lin, *Sci. Adv.*, 2023, 9, eadf6152.
- [25]Y. Chen, Y. Zheng, J. Wang, X. Zhao, G. Liu, Y. Lin, Y. Yang, L. Wang, Z. Tang, Y. Wang, Y. Fang, W. Zhang and X. Zhu, *Sci. Adv.*, 10, eadm9631.
- [26]H. Hou, W. Wang, T. Li, Z. Zhang, X. Miao, G. Cai, X. Lu, Y. Yi and Y. Lin, Angew. Chem. Int. Ed., 2025, n/a, e202425420.
- [27] M. Yang, B. Yin, G. Hu, Y. Cao, S. Lu, Y. Chen, Y. He, X. Yang, B. Huang, J. Li, B. Wu, S. Pang, L. Shen, Y. Liang, H. Wu, L. Lan, G. Yu, F. Huang, Y. Cao and C. Duan, *Chem*, 2024, **10**, 1425-1444.
- [28]B. Yin, X. Zhou, Y. Li, G. Hu, W. Wei, M. Yang, S. Jeong, W. Deng, B. Wu, Y. Cao, B. Huang, L. Pan, X. Yang, Z. Fu, Y. Fang, L. Shen, C. Yang, H. Wu, L. Lan, F. Huang, Y. Cao and C. Duan, *Adv. Mater.*, 2024, 36, 2310811.
- [29]H. Zhang, R. Mao, L. Yuan, Y. Wang, W. Liu, J. Wang, H. Tai and Y. Jiang, ACS Appl. Mater. Interfaces, 2024, 16, 9088-9097.
- [30]Z. Zhong, F. Peng, L. Ying, G. Yu, F. Huang and Y. Cao, Sci. China Mater., 2021, 64, 2430-2438.
- [31] Y. Zhang, J. Chen, J. Yang, M. Fu, Y. Cao, M. Dong, J. Yu, S. Dong, X. Yang, L. Shao, Z. Hu, H. Cai, C. Liu and F. Huang, *Adv. Mater.*, 2024, **36**, 2406950.