Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Enargite (Cu₃AsS₄): A Ductile Mid-Temperature Thermoelectric Material

Prakash Govindaraj^{a,b}, Hern Kim^{b,*}, Kathirvel Venugopal^{a,*}

^aDepartment of physics and Nanotechnology, SRM Institute of Science and Technology,

Kattankulathur, Chengalpattu, Tamil Nadu, India - 603 203

^bDepartment of Energy Science and Technology, Environment Waste Recycle Institute,

Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea

*Corresponding authors: <u>hernkim@mju.ac.kr</u>, <u>kathirvv@srmist.edu.in</u>

Fig. S1 AMSET - Interpolation factor convergence test at fixed temperature and carrier concentration.

S1.1. Cahill-Pohl and Slack model

Generally, the lattice thermal conductivity through Cahill and Slack model is manually estimated from elastic properties. The minimum lattice thermal conductivity is estimated by Cahill model¹ which is given by,

$$\kappa_{min} = \frac{k_B}{2.48} n^{2/3} (v_L + 2v_T) \tag{1}$$

The number density (n) is

$$n = \frac{Z}{V} \tag{2}$$

Where, Z - formula unit, V - volume of the unit cell (m^3) .

The longitudinal and transverse sound velocity is given as²

$$v_L = \left(\frac{B + \frac{4G}{3}}{\rho}\right)^{\frac{1}{2}} \tag{3}$$

$$v_T = \left(\frac{G}{\rho}\right)^{\frac{1}{2}} \tag{4}$$

Where, *B*, *G* are estimated from Voigt-Reuss-Hill approximation.

The mass density (ρ , unit is g/cm³) is

$$\rho = \frac{Z \times M.W}{N_A \times V} \tag{5}$$

Where, M.W – Molecular weight (g/mole), N_A – Avogadro number (6.022140 × 10²³ mole⁻¹).

Further, the temperature dependent lattice thermal conductivity can be obtained from elastic constants through Slack model, expressed as,³⁻⁵

$$\kappa_L = A \frac{\bar{M} \,\theta_D^3 \delta}{\gamma^2 n^{2/3} T} \tag{6}$$

A – constant,

$$A = \frac{5.720 \times 10^7 \times 0.849}{2(1 - 0.514\gamma^{-1} + 0.228\gamma^{-2})}$$
(7)

The average atomic mass \overline{M} is

$$\overline{M} = \frac{M.W}{n} \tag{8}$$

The Debye temperature θ_D is

$$\theta_D = \frac{h}{k_B} v_m \left(\frac{3N}{4\pi V}\right)^{1/3} \tag{9}$$

Here v_m is the average sound velocity, given by

$$v_m = \frac{1}{\left[\left[\frac{1}{3} \left(\frac{2}{v_T^3} + \frac{1}{v_L^3} \right) \right] \right]^{1/3}}$$

(10)

The average volume per atom δ is

$$\delta = \left(\frac{V}{n}\right)^{1/3} \tag{11}$$

 ${\it N}$ - number of atoms in the formula unit

Grüneisen parameter,
$$\gamma = \frac{3}{2} \left(\frac{1+v}{2-3v} \right)$$
 (12)

Poisson's ratio,
$$v = \frac{1 - 2\left(\frac{v_T}{v_L}\right)^2}{2 - 2\left(\frac{v_T}{v_L}\right)^2}$$

(13)

Fig. S2 (a) *q*-mesh Convergence test and **(b)** direction dependent lattice thermal conductivity against temperature for Cu₃AsS₄ using Phono3py with non-analytical term correction and isotopic scattering.

Fig. S3 (a) Cutoff distance, (b) q-grid and (c) scaleboard convergence test. (d) Direction dependent lattice thermal conductivity against temperature for Cu_3AsS_4 using ShengBTE.

S1.2. Transport properties of n-type Cu₃AsS₄

Fig. S4 (a) Relaxation time for electrons and (b) electrical conductivity for n-type Cu₃AsS₄

Fig. S5 (a) Seebeck coefficient and (b) power factor for n-type Cu₃AsS₄.

Transport Properties	^Т (К)	p-type Cu ₃ AsS ₄	n-type Cu ₃ AsS ₄
τ _{tot} (fs)	300	11.9	3.85
	600	5.05	1.63
	900	2.98	1.03
σ (S m ⁻¹)	300	5019.89	13040.05
	600	2261.33	3183.02
	900	1397.83	1101.11
S (μV K ⁻¹)	300	341	-243
	600	460	-334
	900	508	-398

Table S1. Temperature dependent total relaxation time $({}^{\tau}_{tot})$, electrical conductivity (σ) and Seebeck coefficient (*S*) for p- and n-type Cu₃AsS₄ for the carrier concentration of 1×10¹⁹ cm⁻³.

Table S2. Comparison of the optimum thermoelectric power factor (PF) and corresponding carrier concentration (*n*) for p- and n-type Cu_3AsS_4 at 300 K, 600 K and 900 K.

Cu ₃ AsS ₄	Т (К)	Optimum PF	п	
		(mW m ⁻¹ K ⁻²)	(cm ⁻³)	
p-type	300	1.49	$3.5 imes 10^{20}$	
	600	1.90	$4.0 imes 10^{20}$	
	900	1.80	$5.0 imes 10^{20}$	
n-type	300	0.82	$1.8 imes 10^{19}$	
	600	0.51	5.0×10^{19}	
	900	0.36	$1.1 imes 10^{20}$	

Fig. S6 Electronic thermal conductivity for n-type Cu₃AsS₄.

Fig. S7 Total thermal conductivity for p-type Cu_3AsS_4 with κ_L obtained from (a) mDC, (b) Slack and (c) PBTE-RTA approaches.

Fig. S8 Total thermal conductivity for n-type Cu_3AsS_4 with κ_L obtained from (a) mDC, (b) Slack, (c) PBTE-RTA, and (d) PBTE-Iterative approaches.

Table S3. Temperature dependent electronic thermal conductivity (${}^{\kappa_e}$) and total thermal conductivity (${}^{\kappa_{Total}}$) for p- and n-type Cu₃AsS₄. Four sets of ${}^{\kappa_{Total}}$ values are presented: each calculated with lattice thermal conductivity (${}^{\kappa_L}$) obtained from the mDC, Slack, PBTE-RTA and PBTE-Iterative approaches. For better comparison, all the values are given for the carrier concentration of 1×10¹⁹ cm⁻³.

Transport Properties	^T (K)	p-type Cu ₃ AsS ₄	n-type Cu ₃ AsS ₄
	300	0.034	0.051
$(W m^{-1} K^{-1})$	600	0.024	0.018
	900	0.017	0.008
Kratal	300	1.207	1.224
$(\mathbf{W} \mathbf{m}^{-1} \mathbf{K}^{-1})$	600	0.535	0.529
(^K ^L from mDC)	900	0.344	0.336
κ _{Total}	300	1.058	1.075
$(W m^{-1} K^{-1})$	600	0.536	0.530
(^{<i>nL</i>} from Slack)	900	0.358	0.349
κ _{Total}	300	3.020	3.037
$(W m^{-1} K^{-1})$	600	1.471	1.465
(^{~L} from PBTE-RTA)	900	0.976	0.967
κ _{Total}	300	3.199	3.216
$(\mathbf{W} \mathbf{m}^{-1} \mathbf{K}^{-1})$	600	1.562	1.556
(" ^L trom PBTE-Iterative)	900	1.038	1.029

Fig. S9 The calculated zT for n-type Cu₃AsS₄ with κ_L derived from (a) mDC, (b) Slack, (c) PBTE-RTA, and (d) PBTE-Iterative approaches.

Table S4. Optimum Figure of merit (*zT*) and corresponding carrier concentration (*n*) for p and n-type Cu_3AsS_4 at different temperatures (300 K, 600 K and 900 K), computed using four different phonon transport approaches such as mDC, Slack, PBTE-RTA and PBTE-Iterative.

Approaches used to calculate <i>k_L</i>	T (K)	p-type		n-type	
		zT	<i>n</i> (cm ⁻³)	zT	<i>n</i> (cm ⁻³)
mDC	300	0.26	$1.9 imes 10^{20}$	0.20	1.6×10^{19}
	600	1.19	$1.3 imes 10^{20}$	0.53	$4.0 imes 10^{19}$
	900	2.31	1.4×10^{20}	0.83	$7.0 imes 10^{19}$
Slack	300	0.29	$1.8 imes 10^{20}$	0.22	1.5×10^{19}
	600	1.19	$1.3 imes 10^{20}$	0.53	$4.0 imes 10^{19}$
	900	2.25	1.4×10^{20}	0.80	$7.0 imes 10^{19}$
PBTE-RTA	300	0.12	2.6×10^{19}	0.08	1.6×10^{19}
	600	0.57	2.2×10^{19}	0.20	$4.0 imes 10^{19}$
	900	1.12	2.4×10^{19}	0.32	$9.0 imes 10^{19}$
PBTE- Iterative	300	0.12	2.6×10^{19}	0.06	4.0×10^{19}
	600	0.54	2.2×10^{20}	0.19	4.5×10^{19}
	900	1.07	2.4×10^{20}	0.30	9.0×10^{19}

References

- D. G. Cahill, A. Melville, D. G. Schlom and M. A. Zurbuchen, *Applied Physics Letters*, 2010, 96.
- 2. W. Chen, J.-H. Pöhls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z. M. Gibbs, H. Zhu, M. Asta and G. J. Snyder, *Journal of Materials Chemistry C*, 2016, **4**, 4414-4426.
- 3. C. Loftis, K. Yuan, Y. Zhao, M. Hu and J. Hu, *The Journal of Physical Chemistry A*, 2020, **125**, 435-450.
- 4. D. T. Morelli, G. A. Slack, S. L. Shindé and J. S. Goela, in *High Lattice Thermal Conductivity Solids*, Springer, 2006.
- 5. G. A. Slack, R. A. Tanzilli, R. Pohl and J. Vandersande, *Journal of Physics and Chemistry of Solids*, 1987, **48**, 641-647.