Electronic Supplementary Information (ESI) for:

Enhancing Optoelectronic Performance of Organic Phototransistors through Surface Doping of Tetra-bromo Perylene Diimide Single Crystals

Huagui Zhuo^{‡a}, Ye In Cho^{‡b}, Ke Gao^a, Zhiwei Wang^a, Zhenping Li^a, Xingshuo Chu^a, Tianhang Cui^a, Wanuk Choi^c, Gang Chang^d, Jaeyong Ahn^{*b}, Xiaobo Shang^{*a}, Joon Hak Oh^{*b}

^aState Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China. E-mail: xiaoboshang@xjtu.edu.cn

^bSchool of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. E-mail: joonhoh@snu.ac.kr, jaeyongahn@snu.ac.kr

^cCenter for Ordered Nanoporous Materials Synthesis, School of Environmental Science and Engineering, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea

^dInstrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, P. R. China

[‡]Huagui Zhuo and Ye In Cho equally contributed to this work.

Supplementary Contents

Characterization of synthesized molecules	-S3
Estimation of optoelectrical properties	-S5
X-ray crystallographic data for (S)-4Br-PDI-Ph single crystal	-S6

Supplementary Figures

Cyclic voltammetry results of (S)-4Br-PDI-Ph. (Fig. S1)S7
Optical microscope images of (S)-4Br-PDI-Ph single crystal based OPTs with bottom
gate top contact configuration. (Fig. S2) S8
Powder X-ray diffraction results of (S)-4Br-PDI-Ph. (Fig. S3)S9
Energy diagrams for electron transfer from aniline vapor to (S)-4Br-PDI-Ph single
crystals. (Fig. S4)S10
Transfer and output current hysteresis curves. (Fig. S5)S11
Transfer characteristics of pristine (S)-4Br-PDI-Ph under monochromatic light
irradiation. (Fig. S6)S12

Supplementary Tables

Energy level summary from CV measurement and DFT calculation. (Table S1)S13
Optoelectronic characteristics of nanowires based organic phototransistors. (Table S2)
S13
Several literatures comparing the performance improvement after doping. (Table S3) -
S13

(*S*)-4Br-CPDI-Ph: ¹H NMR (400 MHz, CDCl₃): δ 8.78 (s, 2 H), 8.78 (s, 2 H), 7.51 (d, *J* = 7.6 Hz, 4 H), 7.32-7.36 (m, 4 H), 7.23-7.28 (m, 2 H), 6.53 (q, *J* = 7.2 Hz, 2 H), 2.01 (d, *J* = 7.2 Hz, 6 H) ppm. ppm. ¹³C NMR (100 MHz, CDCl₃): δ 162.2, 140.0, 139.9, 136.3, 131.6, 131.4, 128.3, 127.4, 127.3, 124.0, 123.9, 123.9, 122.9, 50.9, 16.2 ppm. HRMS (ESI) *m/z*: [M+K]⁺ Calcd for C₄₀H₂₂Br₄N₂O₄⁺ 948.7950; Found: 948.7956.

Estimation of Optoelectrical Properties

To investigate the external quantum efficiency (EQE) (η) of OPTs was calculated which can be defined as the ratio of number of photogenerated carriers that practically enhances the drain current to the number of photons incident onto the OPT channel area, using the following equation:

$$\eta = \frac{(I_{light} - I_{dark})hc}{eP_{int}A\lambda_{peak}}$$

where *h* is the plank constant, *c* the speed of light, *e* the fundamental unit of charge, *A* the area of the transistor channel, and λ_{peak} the peak wavelength of the incident light, respectively. Detectivity usually describes the smallest detectable signal, which allows comparisons of photodetector devices with different configurations and areas. D^* was evaluated within this study using the following Equations:

$$D^* = \frac{\sqrt{A}}{NEP}$$
$$NEP = \frac{\sqrt{\overline{I_n^2}}}{R}$$

In these equations, A is the photodetector active area, NEP the noise equivalent power, and $\overline{I_n^2}$ the measured noise current. If the major limit to detectivity is shot noise from the drain current under dark conditions, D^* can be simplified as:

$$D^* = \frac{R}{\sqrt{(2e \cdot I_{dark}/A)}}$$

X-ray Crystallography

X-ray Crystallographic Data for 4Br-PDI-Ph Single Crystal

C₅₄H₃₈Br₄N₂O₄ (M =1098.50 g/mol): monoclinic, space group C2 (no. 5), a = 20.414(4) Å, b = 7.438(2) Å, c = 15.499(3) Å, $a = 90.00(3)^{\circ}$, $\beta = 106.15(3)^{\circ}$, $\gamma = 90.00(3)^{\circ}$, V = 2260.49(3) Å³, Z = 2, T = 100(2) K, μ (synchrotron) = 3.611 mm⁻¹, Dcalc = 1.614 g/cm³, 17942 reflections measured ($8.212^{\circ} \le 2\theta \le 59.342^{\circ}$), 6306 unique which were used in all calculations. The final R_1 was 0.0381 (I > 2σ (I)) and wR_2 was 0.0874 (all data). Flack parameter: 0.005(8); the enantiomer has been assigned by reference to an unchanging chiral centre in the synthetic procedure. CCDC: 2416410

Figure S1. Cyclic voltammetry results of (a) ferrocene reference and (b) (*S*)-4Br-PDI-Ph in chloroform solution (10^{-4} M) with tetrabutylammonium hexafluorophosphate (0.1 M).

Figure S2. Optical microscope images of (*S*)-4Br-PDI-Ph single crystal based OPTs with bottom gate top contact configuration.

Figure S3. Powder X-ray diffraction results of pristine and doped (*S*)-4Br-CPDI-Ph single crystals.

Figure S4. Energy diagrams for electron transfer from aniline vapor to (*S*)-4Br-PDI-Ph single crystals.

Figure S5. (a) Transfer and (b) output current hysteresis curves of pristine and doped (*S*)-4Br-PDI-Ph single crystal-based OPTs.

Figure S6. Transfer characteristics of pristine (*S*)-4Br-PDI-Ph single crystal based OPT under monochromatic light irradiation ($\lambda = 532$ nm).

Table S1. Energy levels of (*S*)-4Br-PDI-Ph estimated from CV measurements and DFT calculations.

Material	Frontier Orbital	Energy level (eV)		
		CV measurements	DFT calculations	
4Br-PDI-Ph	LUMO	-3.96	-3.72	
	НОМО	-6.16	-6.28	

Table S2. Summary of on/off ratio, threshold voltages, average electron mobilities, and the number of deep interface trap states under dark condition.

Material	Doping	$I_{\rm on}/I_{\rm off}$	$V_{\mathrm{T}}\left(\mathrm{V} ight)$	$\mu ({ m cm}^2{ m V}^{-1}{ m s}^{-1})$	$N_{\rm trap} \ [imes 10^{11} \ { m cm}^{-2}]$
(S)-4Br-	Pristine	> 10 ³	12.5	2.95×10^{-3}	4.8
PDI-Ph	Doped	> 10 ³	8.4	$1.19 imes 10^{-2}$	1.9

Table S3. Several literatures comparing the performance improvement after doping.

Materials	Doping time	μ	EQE	D*	Reference
(S)-4Br-PDI- Ph	5 min	4 times	2.3 times	2 times	This work
(<i>R</i>)-CPDI- 2CN-Ph	30 min	3 times	9 times	2 times	<i>Chin. Chem. Lett.</i> , 2024, 35 , 109777.
(<i>R/S</i>)- C1CPDI-C6	1 h	3 times	3 times	8 times	<i>Chem. Mater.</i> 2022, 34 , 8675– 8683