Supplementary data

Impact of crystallinity and local disorder on the luminescence properties of solvothermally synthesized LuPO₄:Pr³⁺ nanocrystals

<u>Sanu Bifal Maji</u>¹*, Alexander Vanetsev¹, Vitali Nagirnyi¹, Kirill Chernenko², Eduard Feldbach¹, Jekaterina Kozlova¹, Hugo Mändar¹, Ivo Romet¹, Mihkel Rähn¹, and Marco Kirm¹

¹Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia

²MAX IV Laboratory, Lund University, P.O. Box 118, SE-22100 Lund, Sweden

1. Effect of annealing on the particle size distribution profile of as-prepared $LuPO^4$: $Pr^{3+}(1\%)$ nanoparticles.

S2. $Pr^{3+} 4f^{1}5d^{1} \rightarrow 4f^{2}$ luminescence in as-prepared and annealed LuPO₄: $Pr^{3+}(1\%)$ nanocrystals (L1) measured at room temperature and liquid helium temperatures excited by SR photons with different energies.

S3. $Pr^{3+} 4f^{1}5d^{1} \rightarrow 4f^{2}$ luminescence under intra center excitation energy of Pr^{3+} ion (6.54 eV) measured at (a) 300K and (b) 6.8 K temperatures

S4. Raman spectra of as-prepared LuPO₄: Pr^{3+} (1%) nanoparticles L1 and L2 (see the main text) under different laser excitation wavelengths (633 nm, 514 nm, 488 nm, 457 nm).

S5. Decay times (in ns) and estimation of light sums (in %) for different Pr^{3+} emissions from each samples in the UV-C spectral range under intra-center excitation at 7 K.

Sr. No	Sample Name	Radiative transitions with the assignments and emission energies (eV)							
	1	$Pr^{3+} 4f^{1}5d^{1} \rightarrow {}^{3}H_{4}$ (5.31 eV)		$Pr^{3+}4f^{1}5d^{1} \rightarrow {}^{3}H_{5}$ (5.06 eV)		$\begin{array}{c} Pr^{3+}4f^{1}5d^{1} \rightarrow {}^{3}H_{6} \\ (4.71 \text{ eV}) \end{array}$			
		τ ₁	τ_2	τ ₁	τ_2	τ ₁	τ_2		
1.	As-prepared L1	1.2 ns (98.9 %)	6.8 ns (1.1 %)	1.6 ns (97.7%)	7.5 ns (2.3 %)	1.9 ns (95.3 %)	8.2 ns (4.7 %)		
2.	Annealed L1	2.9 ns (63.9 %)	9.9 ns (36.1 %)	3.6 ns (60.5 %)	10.9 ns (39.5 %)	3.6 ns (60.6 %)	11.0 ns (39.4 %)		
3.	As-prepared L2	3.0 ns (85.6 %)	13.9 ns (14.4 %)	3.3 ns (79.7 %)	14.5 ns (20.3 %)	3.3 ns (73.3 %)	15.0 ns (26.7 %)		

4.	Annealed L2	4.4 ns (51.4 %)	14.9 ns (48.6 %)	5.1 ns (52.2 %)	16.0 ns (47.8 %)	5.6 ns (54.3 %)	16.5 ns (45.7 %)