Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

A Novel High-efficiency Near-infrared Phosphor Mg_{0.9}Ta₂Zn_{2.1}O₈:Cr³⁺,Yb³⁺ for

Spectroscopy Applications

Jia Liu, ^{a, b} Shuai Wei, ^{b*}, Dashuai Sun, ^b Zeyu Lyu, ^b Xueying Zhang, ^{a, b} Xin Wang, ^{a, b}

Xiaowei Zhang, ^b and Hongpeng You ^{a, b*}

^aSchool of Rare Earths, University of Science and Technology of China, Hefei,

230026, PR China.

^bKey Laboratory of Rare Earths and Institute of Material and Chemistry, Ganjiang

Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.

* Corresponding author. Fax: +86 431 85698041

E-mail address: hpyou@ciac.ac.cn (H.P. You), swei@gia.cas.cn (S. Wei)

Supplementary Note 1:

The decay curve of MTZO:xCr³⁺ (0.004 $\le x \le 0.014$) phosphors is shown in Figure 3f, and its lifetime increases with the increase of Cr³⁺ content, which properly promotes the energy transfer between Cr³⁺ ions and can be fitted by the following formula:[1]

$$I = Aexp(-\frac{t}{\tau}) \tag{1}$$

where *I* denotes the emission intensity at time *t*, A is a constant, and τ represents the lifetime. All the decay curves follow a single exponential function, indicating that there is only one kind of emission center, which is consistent with the substitution of Mg²⁺ by Cr³⁺ in the host.

Fig. S1 Concentration-dependent PL spectra of MTZO: xCr^{3+} (x = 0.004 to 0.014).

Fig. S2 the FWHM of Cr^{3+} emission and the combined peak of Cr^{3+} -Yb³⁺ emission in MTZO.

Fig. S3 Schematic representation of the energy transfer from the Cr^{3+} to Yb^{3+} ions.

Fig. S4 Quantum yield (QY) of the sample MTZO:0.006Cr³⁺ and MTZO:0.006Cr³⁺,0.04Yb³⁺.

Fig. S5 The FWHM of Cr³⁺ emission and the combined peak of Cr³⁺-Yb³⁺ emission in MTZO.

Compound	MTZO:Cr ³⁺	MTZO: Cr ³⁺ ,Yb ³⁺
Crystal system	Monoclinic	Monoclinic
Space group	C 2/c	C 2/c
a (Å)	19.01420	19.02620
b (Å)	5.88345	5.88628
c (Å)	5.20010	5.20192
V [Å ³]	581.726793	582.577589
α [°]	90	90
β[°]	90.2041	90.2080
γ [°]	90	90
Rwp [%]	5.38	6.32
Rp [%]	7.05	8.15
$Mg_{0.9}Ta_2Zn_{2.1}O_8$	Z = 4	

Table S1. Crystallographic data of MTZO:Cr³⁺ and MTZO:Cr³⁺,Yb³⁺.

Atom	Site	Х	Y	Z	Occ.
01	8f	0.19405	0.35572	0.37058	1.000
O2	8f	0.18155	0.10382	0.94254	1.000
O3	8f	0.05704	0.39366	0.06638	1.000
O4	8f	0.05972	0.14926	0.59066	1.000
Zn1	4e	0.00000	0.64072	0.25000	0.194
Zn2	8f	0.27997	0.15159	0.26672	1.000
Mg1	4e	0.00000	0.64072	0.25000	0.806
Tal	8f	0.11482	0.16186	0.24100	0.994
Crl	8f	0.11482	0.16186	0.24100	0.006

Table S2. Atomic position of the MTZO:Cr³⁺ sample

Atom	Site	Х	Y	Ζ	Occ.
01	8f	0.19405	0.35572	0.37058	1.000
O2	8f	0.18155	0.10382	0.94254	1.000
03	8f	0.05704	0.39366	0.06638	1.000
O4	8f	0.05972	0.14926	0.59066	1.000
Zn1	4e	0.00000	0.64393	0.25000	0.528
Zn2	8f	0.28070	0.15152	0.28359	1.000
Mg1	4e	0.00000	0.64393	0.25000	0.472
Tal	8f	0.11514	0.16222	0.24766	0.988
Crl	8f	0.11514	0.16222	0.24766	0.006
Yb1	8f	0.11514	0.16222	0.24766	0.04

Table S3 Atomic position of the MTZO:Cr³⁺,Yb³⁺.

[1] B. Zheng, J. Yan, J. Li, Y. Wang, X. Yang, W. Li, Sr₈MgSc(PO₄)₇:Eu²⁺ phosphor: d–f transition driven applications for solid-state lighting and extreme environment multimode sensing investigations, Inorganic Chemistry Frontiers, (2025).