Supplementary information

Revealing Energy Transfer Mechanisms and Accelerating Intelligent Detection: Cr³⁺ and Ni²⁺ Co-Doped Lu₂CaMg₂Si₃O₁₂ Phosphors for NIR Applications

Zaidong Chen,^a Yuefei Xiang,^a Xinghui Qin,^a Lei Zhong,^a Hong Liao,^b Shiwen Liu,^a Jiaqi Wang,^a Kezhi Zheng,^b Dejian Hou,^c Lei Zhou *^a and Mingmei Wu ^a

^{a.} Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology/School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, P. R. China.

^{b.} School of Physics, South China Normal University, Guangzhou, 510006, P. R. China.

^{c.} School of Materials Science and Engineering, Hanshan Normal University, Chaozhou, Guangdong, 521041, P. R. China.

* Corresponding authors: Lei Zhou

E-mail: zhoul8@mail.sysu.edu.cn

Results and Discussion

Fig. S1 XRD patterns of (a) $Lu_2CaMg_{2,y}Si_3O_{12}$: yNi^{2+} ; (b) $Lu_2CaMg_{1.98-y}Si_3O_{12}$: $0.02Cr^{3+}$, yNi^{2+} , and (c) $Lu_2CaMg_{2-x}Si_3O_{12}$: xCr^{3+} .

Fig. S2 Rietveld refinements for XRD patterns. (a) $Lu_2CaMg_2Si_3O_{12}$ host; (b) $Lu_2CaMg_{1.92}Si_3O_{12}$:0.08Ni²⁺; (c) $Lu_2CaMg_{1.98}Si_3O_{12}$:0.02Cr³⁺.

Fig. S3 The partial magnification of XRD patterns for $Lu_2CaMg_2Si_3O_{12}$ host, $Lu_2CaMg_{1.92}Si_3O_{12}:0.08Ni^{2+}$, $Lu_2CaMg_{1.98}Si_3O_{12}:0.02Cr^{3+}$, and $Lu_2CaMg_{1.92}Si_3O_{12}:0.02Cr^{3+}$, $0.06Ni^{2+}$.

Fig. S4 EDS of Lu_2CaMg_{1.84}Si_3O_{12}:0.08Cr^{3+}, 0.08Ni^{2+}.

Fig. S5 XPS fine spectra of Lu₂CaMg_{1.84}Si₃O₁₂:0.08Cr³⁺,0.08Ni²⁺: (a) Ni 2p; (b) Cr 2p.

Fig. S6 Experimental determination Eg of Lu₂CaMg₂Si₃O₁₂ host and Lu₂CaMg_{1.92}Si₃O₁₂:0.08Ni²⁺.

Based on DRS data, the absorbance data can be obtained using Kubelka-Munk formula¹:

$$F(R) = (1 - R)^{2} / (2R) = K/S$$
(S1)

Where R stands for reflectance, K and S represent absorption coefficient and scattering coefficient.

The energy band gap (E_g) could be evaluated using Tauc relation²:

$$\left[F(R)h\nu\right]^{1/n} = A(h\nu - E_g) \tag{S2}$$

Where hv and A stand for photon energy and absorption constant, respectively. The n values of 1/2 and 2 correspond to direct and indirect allowed transitions in the same order. The electronic transition of Lu₂CaMg₂Si₃O₁₂ in this work belongs to direct allowed transition (n = 1/2). The band gap of the Lu₂CaMg₂Si₃O₁₂ host and the Lu₂CaMg_{1.92}Si₃O₁₂:0.08Ni²⁺ samples are 5.83 and 5.86 eV, respectively.

The luminescence decay curves of $Lu_2CaMg_{2-y}Si_3O_{12}$: yNi^{2+} can be conformed to the double exponential function as described in equation (S3):

$$I = A_1 \exp\left(\frac{t}{\tau_1}\right) - A_2 \exp^{[t_0]}\left(\frac{t}{\tau_2}\right)$$
(S3)

Where A_1 and A_2 are constants, I represents the luminescence intensity, t is time, τ_1 and τ_2 correspond to the lifetimes of the two exponential components.

Fig. S7 Variation of Lu₂CaMg_{2-y}Si₃O₁₂:yNi²⁺ decay lifetime with Ni²⁺ concentration, y.

Fig. S8 PL spectra of $Lu_2CaMg_{2-x}Si_3O_{12}:xCr^{3+}$.

Fig. S9 Spectral overlap between PL of Cr^{3+} and PLE of Ni^{2+} .

Fig. S10 The DRS of the $Lu_2CaMg_2Si_3O_{12}$ host, $Lu_2CaMg_{1.92}Si_3O_{12}:0.02Cr^{3+}, 0.06Ni^{2+}$ samples and $Lu_2CaMg_{1.94}Si_3O_{12}:0.06Ni^{2+}$ samples.

Fig. S11 PL spectra of $Lu_2CaMg_{1.98-\nu}Si_3O_{12}:0.02Cr^{3+}$, yNi^{2+} phosphors upon 425 nm excitation.

Dexter's method to calculate R₀ (Fig. S12a to Fig. S12h):³

- (a) Measure the emission spectrum of Lu₂CaMg_{1.98}Si₃O₁₂:0.02Cr³⁺ and calculate emission area by integration: 1.8223×10^{9} .
- (b) Convert the emission spectrum of $Lu_2CaMg_{1.98}Si_3O_{12}$:0.02Cr³⁺ into energy coordinates.
 - $I(E) = I(\lambda)\lambda^2$: $y(b) = y(a) \times \lambda^2$. $x(b) = 1239.84 \div x(a)$. Calculate emission area by integration: 2.2594 $\times 10^{12}$.

- (c) Normalize the area of the emission spectrum of Lu₂CaMg_{1.98}Si₃O₁₂:0.02Cr³⁺ by dividing: $y(c) = y(b) \div (2.2594 \times 10^{12}).$
- (d) Measure the excitation spectrum of $Lu_2CaMg_{1.94}Si_3O_{12}$:0.06Ni²⁺.
- (e) Convert the ordinate of Lu₂CaMg_{1.94}Si₃O₁₂:0.06Ni²⁺ to absorption cross section σ and the abscissa to energy: $\sigma(e) = (\ln 10 \times 1000/L) \times y(d)$; $x(e) = 1239.84 \div x(d)$. Where L is Avogadro number and σ is in cm². Calculate area of σ by integration: 1.1468 $\times 10^{-16}$. $\int \sigma(E)dE = Q_A$; So $Q_A = 1.1468 \times 10^{-16}$ cm² eV⁻¹. Where Q_A is the absorption cross-section of the acceptor.
- (f) Normalize the area of the absorption cross section (σ) of Lu₂CaMg_{1.94}Si₃O₁₂:0.06Ni²⁺ by dividing: $y(f) = y(e) \div (1.1468 \times 10^{-16}).$
- (g) Overlap the normalized emission of Lu₂CaMg_{1.98}Si₃O₁₂:0.02Cr³⁺ and absorption cross section σ of Lu₂CaMg_{1.94}Si₃O₁₂:0.06Ni²⁺.
- (h) Calculating the summation $\int f_D(E)f_A(E)E^{-4}dE$, as follow: $y(h) = y(c)[i] \times y(f)[i] \times (x[i+1] - x[i])/x[i]^4$. The result of $\int f_D(E)f_A(E)E^{-4}dE$ in this work is 4.6646 \times 10⁻⁴. Where [i] is the rows, as shown in Fig. S12h.

Fig. S12 Dexter's method to calculate R₀: (a) Emission spectrum of Lu₂CaMg_{1.98}Si₃O₁₂:0.02Cr³⁺; (b) Energy spectrum of Lu₂CaMg_{1.98}Si₃O₁₂:0.02Cr³⁺; (c) Normalized emission area coordinates emission of Lu₂CaMg_{1.98}Si₃O₁₂:0.02Cr³⁺; (d) Excitation spectrum of Lu₂CaMg_{1.94}Si₃O₁₂:0.06Ni²⁺; (e) Absorption cross-section of Lu₂CaMg_{1.94}Si₃O₁₂:0.06Ni²⁺; (f) Normalized absorption cross-section of Lu₂CaMg_{1.94}Si₃O₁₂:0.06Ni²⁺; (g) Normalized of $Lu_2CaMg_{1.94}Si_3O_{12}:0.06Ni^{2+}$ absorption cross-section and normalized emission spectrum of $Lu_{2}CaMg_{1.98}Si_{3}O_{12}:0.02Cr^{3+}; (h) Spectral overlap of Lu_{2}CaMg_{1.94}Si_{3}O_{12}:0.06Ni^{2+} and Lu_{2}CaMg_{1.98}Si_{3}O_{12}:0.02Cr^{3+}.$

Temperature sensing performance

Fig. S13a illustrates the luminescence properties of Lu₂CaMg_{1,92}Si₃O₁₂:0.02Cr³⁺,0.06Ni²⁺ after three cycles of low-high-low temperature, demonstrating minimal changes in luminescence intensity. This observation highlights the excellent of temperature repeatability the Lu₂CaMg₁₉₂Si₃O₁₂:0.02Cr³⁺,0.06Ni²⁺ phosphor across the 123 to 448 K range. Notably, the luminescence intensity of Ni²⁺ decreases more rapidly than that of Cr³⁺ as the temperature increases (Fig. S13b), indicating that the Lu₂CaMg_{1.92}Si₃O₁₂:0.02Cr³⁺,0.06Ni²⁺ phosphor is suitable for dualmode optical thermometry. The potential dual-mode optical thermometry, based on the fluorescence intensity ratio (FIR), is expressed in the following equation:⁴

$$FIR = \frac{I_{Cr^{3}}}{I_{Ni^{2}}} = A + B \exp[i\pi (-\Delta E/(k_{B}T))]$$
(S4)

Where *A*, *B* are constants, ΔE is the energy gap, k_B is the Boltzmann's constant, and *T* is the Kelvin temperature. As shown in Fig. S13c, the measured plots of FIR can be well fitted by equation (S4), confirming the phosphor's suitability for dual-mode optical thermometry. To further evaluate the optical thermometry performance of this phosphor, it is necessary to investigate the absolute sensitivity (*S_a*) and relative sensitivity (*S_r*), which are expressed by the equations (S5) and (S6):⁵

$$S_{a} = \left| \frac{\partial FIR}{\partial T} \right| = B \exp\left(-\frac{\Delta E}{(k_{B}T)}\right) \times \frac{\Delta E}{k_{B}T^{2}}$$
(S5)
$$S_{r} = \left| \frac{1}{FIR} \frac{\partial FIR}{\partial T} \right| \times 100\% = \frac{B \exp\left(-\frac{\Delta E}{(k_{B}T)}\right)}{A + B \exp\left(-\frac{\Delta E}{(k_{B}T)}\right)} \times \frac{\Delta E}{k_{B}T^{2}} \times 100\%$$
(S6)

The maximum S_a value is 1.01×10^{-3} K⁻¹ at 448 K and the maximum S_r is 0.42% K⁻¹ at 298 K, as presented in Fig. S13d. Table S3 lists some reported candidate materials for optical thermometry. The above results indicate that this phosphor has potential for application in optical thermometry.

Fig. S13 (a) Temperature cycle stability of the Lu₂CaMg_{1.92}Si₃O₁₂:0.02Cr³⁺,0.06Ni²⁺ sample; (b) Emission intensity of Cr³⁺ and Ni²⁺ at various temperatures; (c) FIR plots and the fitting curve of Lu₂CaMg_{1.92}Si₃O₁₂:0.02Cr³⁺,0.06Ni²⁺; (d) Absolute sensitivity S_a and relative sensitivity S_r of Lu₂CaMg_{1.92}Si₃O₁₂:0.02Cr³⁺,0.06Ni²⁺.

Fig. S14 IQE and EQE of Lu₂CaMg_{1.92}Si₃O₁₂:0.02Cr³⁺,0.06Ni²⁺ at RT.

Fig. S15 IQE and EQE of $Lu_2CaMg_{1.94}Si_3O_{12}$:0.06Ni²⁺ at RT.

Table S1. Rietveld refinement results of $Lu_2CaMg_2Si_3O_{12}$ host, $Lu_2CaMg_{1.98}Si_3O_{12}$: $0.02Cr^{3+}$, $Lu_2CaMg_{1.92}Si_3O_{12}$: $0.08Ni^{2+}$, and $Lu_2CaMg_{1.92}Si_3O_{12}$: $0.02Cr^{3+}$, $0.06Ni^{2+}$.

	host	0.02Cr ³⁺	0.08Ni ²⁺	0.02Cr ³⁺ ,0.06Ni ²⁺
Space group	Ia-3d	Ia-3d	Ia-3d	Ia-3d
a = b = c (Å)	12.02219	12.01892	12.02394	12.02509
$\alpha = \beta = \gamma$ (°)	90	90	90	90
Cell volume (Å ³)	1737.6022	1736.1875	1738.3644	1738.8604
\mathbf{R}_p (%)	7.40	7.43	6.45	6.37
\mathbf{R}_{wp} (%)	10.72	10.73	9.26	9.21

Table S2. Theoretical and experimental ratios of elements in $Lu_2CaMg_{1.84}Si_3O_{12}$: $0.08Cr^{3+}$, $0.08Ni^{2+}$ based on EDS results.

EDS	Lu	Ca	Mg	Si	0	Cr	Ni
Theoretical mass ratio	48.61	5.57	6.21	11.71	26.67	0.58	0.65
Theoretical atomic ratio	2.00	1.00	1.84	3.00	12.00	0.08	0.08
Experimental mass ratio	45.10	5.70	6.49	12.41	28.70	1.15	0.45
Experimental atomic ratio	1.85	1.02	1.92	3.18	12.91	0.16	0.06

Phasnhars	Temperature	S (% K-1)	Refs	
	(K)	$S_r(70 \mathbf{K})$		
Y ₃ Al ₅ O ₁₂ :Cr ³⁺	123-563	0.52	6	
LiGa ₅ O ₈ :Cr ³⁺	300-463	0.59	7	
Gd ₂ GaSb _{0.9} Ta _{0.1} O ₇ :Cr ³⁺ ,Yb ³	303-573	0.60	8	
LiLaP ₄ O ₁₂ :Cr ³⁺ ,Yb ³⁺	77-550	0.32	9	
ZnGa ₂ O ₄ :Bi ³⁺ ,Cr ³⁺	293-473	0.31	10	
BaAl ₁₂ O ₁₉ :Eu ²⁺ ,Cr ³⁺	293-563	0.466	11	
SrTiO ₃ :Ni ²⁺ ,Er ³⁺	183-473	0.44	12	
LaZnGa ₁₁ O ₁₉ :Cr ³⁺ ,Ni ²⁺	100-450	0.61	13	
Mg ₃ Ga ₂ GeO ₈ :Cr ³⁺ ,Ni ²⁺	275-475	0.55	14	
Lu ₂ CaMg ₂ Si ₃ O ₁₂ :Cr ³⁺ ,Ni ²⁺	123-448	0.42	This work	

Table S3. Optical thermometry properties of several reported NIR phosphors.

References

- 1 P. Kubelka and F. Munk, Z. Tech. Phys., 1931, 12, 593-601.
- 2 J. Tauc, A. Menth and D. L. Wood, *Phys. Rev. Lett.*, 1970, **25**, 749-752.
- 3 P. A. Tanner, L. Zhou, C. Duan and K.-L. Wong, Chem. Soc. Rev., 2018, 47, 5234-5265.
- 4 Y. Gao, F. Huang, H. Lin, J. Zhou, J. Xu and Y. Wang, *Adv. Funct. Mater.*, 2016, 26, 3139-3145.
- 5 M. D. Dramićanin, Ł. Marciniak, S. Kuzman, W. Piotrowski, Z. Ristić, J. Periša, I. Evans, J. Mitrić, V. Dorđević, N. Romčević, M. G. Brik and C. G. Ma, *Light: Sci. Appl.*, 2022, **11**, 279.
- 6 A. Zabiliūtė, S. Butkutė, A. Žukauskas, P. Vitta and A. Kareiva, *Appl. Opt.*, 2014, **53**, 907-914.
- 7 D. Chen, Z. Wan and Y. Zhou, *Opt. Lett.*, 2015, 40, 3607,3610.
- 8 L. Ma, R. Wei, Q. Yu, P. Dai, X. Tian, F. Hu and H. Guo, *Mater. Today Chem.*, 2024, 38, 102090.
- 9 L. Marciniak and A. Bednarkiewicz, Sens. Actuators B: Chem., 2017, 243, 388-393.
- 10 E. Glais, M. Pellerin, V. Castaing, D. Alloyeau, N. Touati, B. Viana and C. Chanéac, *RSC. Adv.*, 2018, 8, 41767-41774.
- 11 Y. Zhu, C. Li, D. Deng, H. Yu, H. Li, L. Wang, C. Shen, X. Jing and S. Xu, J. Lumin., 2021, 237, 118142.
- 12 C. Matuszewska and L. Marciniak, J. Lumin., 2020, 223, 117221.
- 13 Q. Zhang, G. Li, G. Li, D. Liu, P. Dang, L. Qiu, H. Lian, M. S. Molokeev and J. Lin, *Adv. Opt. Mater.*, 2024, 12, 2301429.
- 14 C. Wang, Y. Niu, Y. Wang, F. Wu, Q. Zhang, Y. Teng, H. Dong and Z. Mu, *Inorg. Chem.*, 2024, 63, 14383-14391.