Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

## **Electronic Supplementary Information**

# Distinguishing Photodegradation Pathways of Organic Semiconductors on Different Electrode Contacts using FTIR Spectroscopy with Multivariate Analysis

Sarah M. Tyler<sup>a</sup> and Jeanne E. Pemberton\*<sup>a</sup>

<sup>a</sup>Department of Chemistry and Biochemistry University of Arizona 1306 East University Boulevard Tucson, AZ 85721 United States

\*Corresponding author: pembertn@arizona.edu

### Table of Contents

| Ι.    | FBTF Spectral Data: Synthesis of 4,7-bis(9,9-dimethyl-9H-fluoren-2-yl)benzo[c][1,2,5]<br>thiadiazole (FBTF) – Method 1 | <b>S</b> 3 |
|-------|------------------------------------------------------------------------------------------------------------------------|------------|
| II.   | FBTF Spectral Data: Synthesis of 4,7-bis(9,9-dimethyl-9H-fluoren-2-yl)benzo[c][1,2,5]<br>thiadiazole (FBTF) – Method 2 | <b>S</b> 6 |
| III.  | FBTF FTIR Spectral Characterization                                                                                    | <b>S</b> 9 |
| IV.   | Additional IRRA Spectra for FBTF on Ag and ITO                                                                         | S10        |
| v.    | Multivariate Analysis for FTIR Spectral Region 1300-1500 cm <sup>-1</sup>                                              | S12        |
| VI.   | Principal component analysis of IRRA spectral data                                                                     | S12        |
| VII.  | Linear discriminant analysis of IRRA spectral data                                                                     | S15        |
| VIII. | Combined principal component-linear discriminant analysis of IRRA spectral data                                        | S18        |
| IX.   | References                                                                                                             | S21        |

#### I. <u>FBTF spectral data: Synthesis of 4,7-bis(9,9-dimethyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazole</u> (FBTF) – Method 1



**Figure S1.** <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of FBTF synthesized with the method in Scheme S1.  $\delta$  8.05 (d, J = 1.6 Hz, 2H), 8.02 (dd, J = 7.9, 1.6 Hz, 2H), 7.91 (s, 2H), 7.89 (d, J = 1.1 Hz, 2H), 7.83 – 7.79 (m, 2H), 7.51 – 7.47 (m, 2H), 7.42 – 7.33 (m, 4H), 1.61 (s, 12H).



**Figure S2**. <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of FBTF synthesized with the method in Scheme 1.  $\delta$  154.44, 154.25, 154.14, 139.66, 138.96, 136.61, 133.71, 128.56, 128.17, 127.67, 127.24, 123.76, 122.82, 120.44, 120.24, 47.22, 27.39.



Figure S3. FT-ICR mass spectrum of FBTF synthesized with the method in Scheme 1.

#### II. <u>FBTF spectral data: Synthesis of 4,7-bis(9,9-dimethyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazole</u> (FBTF) – Method 2



**Figure S4.** <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) of FBTF synthesized with the method in Scheme 2. δ 8.05 (d, *J* = 1.6 Hz, 2H), 8.02 (dd, *J* = 7.9, 1.6 Hz, 2H), 7.91 (s, 2H), 7.89 (d, *J* = 2.1 Hz, 2H), 7.81 (dd, *J* = 6.8, 1.8 Hz, 2H), 7.49 (dd, *J* = 6.9, 1.7 Hz, 2H), 7.38 (pd, *J* = 7.4, 1.5 Hz, 4H), 1.60 (s, 12H).



**Figure S5.** <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) of FBTF synthesized with the method in Scheme 2.  $\delta$  154.30, 154.10, 154.00, 139.52, 138.82, 136.46, 133.57, 128.42, 128.03, 127.52, 127.10, 123.62, 122.67, 120.30, 120.09, 47.08, 27.25.



Figure S6. APCI mass spectrum of FBTF synthesized with the method in Scheme 2.

#### III. FBTF FTIR spectral characterization



**Figure S7.** a) Transmission spectrum of FBTF synthesized with the method in Scheme S1 in KBr. IRRA spectra of pristine FBTF thin films drop cast onto b) Ag and c) ITO. Spectra collected with 2000 scans at 4 cm<sup>-1</sup> resolution. Intensities plotted as normalized values with respect to the most intense spectral feature, the v(C=C) band at 1446 cm<sup>-1</sup>.

| FBTF                           | Assignment                 | Polymeric System,                     |  |  |  |  |  |  |  |  |
|--------------------------------|----------------------------|---------------------------------------|--|--|--|--|--|--|--|--|
| Wavenumber (cm <sup>-1</sup> ) |                            | Wavenumber (cm <sup>-1</sup> )        |  |  |  |  |  |  |  |  |
| 1348                           | v(C-C)                     | F8BT: 1343 <sup>1</sup>               |  |  |  |  |  |  |  |  |
| 1381                           | δ(CH)                      | F8BT: 1377 <sup>1</sup>               |  |  |  |  |  |  |  |  |
|                                |                            | Polyfluorene: 1377 <sup>2</sup>       |  |  |  |  |  |  |  |  |
| 1446                           | v(C=C) <sub>ring</sub>     | F8BT, 1460 <sup>1</sup>               |  |  |  |  |  |  |  |  |
|                                | -                          | Polyfluorene: 1460 <sup>2</sup>       |  |  |  |  |  |  |  |  |
| 1549                           | ν(C=C)                     | F8BT: 1545 <sup>1</sup>               |  |  |  |  |  |  |  |  |
| 1565, 1580                     | v(C=N)                     | Thiadiazole derivatives:              |  |  |  |  |  |  |  |  |
|                                |                            | 1550-1600 <sup>3</sup>                |  |  |  |  |  |  |  |  |
| 1616                           | ν(C=C)                     | F8BT: 1605 <sup>1</sup>               |  |  |  |  |  |  |  |  |
| 2857 2021 2060                 | v(CH₃)                     | Polyfluorene: 2855, 2926,             |  |  |  |  |  |  |  |  |
| 2037, 2921, 2900               |                            | 2953 <sup>2</sup>                     |  |  |  |  |  |  |  |  |
| 3037, 3053, 3058               | $\nu$ (CH) <sub>ring</sub> | Polyfluorone: 3013, 3061 <sup>4</sup> |  |  |  |  |  |  |  |  |

Table S1: FTIR bands and assignments for FBTF based on F8BT, polyfluorene,



**Figure S8.** IRRA spectra of pristine and degraded FBTF films on ITO after a series of sequential radiant exposures of a), b) 90 min, c), d) 30 min, and e), f) 15 min. Intensities plotted as absorbance values normalized to the most intense band in each pristine spectrum.



**Figure S9.** IRRA spectra of pristine and degraded FBTF films on Ag after a series of sequential radiant exposures of a), b) 90 min, c), d) 30 min, and e), f) 15 min. Intensities plotted as absorbance values normalized to the most intense band in each pristine spectrum.

#### V. <u>Multivariate analysis for IRRA spectral region 1300-1500 cm<sup>-1</sup></u>



**Figure S10.** Results from a) PCA, b) LDA, and c) PCA-LDA on FBTF IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

#### VI. Principal component analysis of IRRA spectral data

1

| РС | 1300-1900 cm <sup>-1</sup> | 1300-1500 cm <sup>-1</sup> |
|----|----------------------------|----------------------------|
| _  | % Variance                 | % Variance                 |
| 1  | 51.1%                      | 79.1                       |
| 2  | 36.3%                      | 16.7                       |
| 3  | 8.7%                       | 2.2                        |
| 4  | 2.1%                       | 0.87                       |
| 5  | 0.81%                      | 0.70                       |
| 6  | 0.43%                      | 0.14                       |
| 7  | 0.16%                      | 0.067                      |

| <b>Table S2:</b> Calculated principal components and |  |
|------------------------------------------------------|--|
| heir % variances for FBTF IRRA spectral data.        |  |



**Figure S11:** Box plot analysis on the first two PCs for IRRA spectral data between 1300-1900 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures. Box plots for a) PC1 and b) PC2 values for spectra labeled by substrate type and exposure.

| Table S3. ANOVA of PC1 and PC2 scores calculated from the IRRA spectral data between 1300-1900 cm <sup>-1</sup> for FBTF on Ag and |
|------------------------------------------------------------------------------------------------------------------------------------|
| ITO under sequential 15 min radiant exposures.                                                                                     |

|       |    |                | PC1 Scores  |          | PC2 Scores |    |                |             |          |          |  |
|-------|----|----------------|-------------|----------|------------|----|----------------|-------------|----------|----------|--|
|       | DF | Sum of Squares | Mean Square | F Value  | Prob>F     | DF | Sum of Squares | Mean Square | F Value  | Prob>F   |  |
| Model | 13 | 47.56947       | 3.65919     | 18.92054 | < 0.0001   | 13 | 33.78994       | 2.59923     | 19.14295 | < 0.0001 |  |
| Error | 56 | 10.83028       | 0.1934      |          |            | 56 | 7.60367        | 0.13578     |          |          |  |
| Total | 69 | 58.39974       |             |          |            | 69 | 41.39361       |             |          |          |  |

Alternative Hypothesis: The means of one or more levels are different.

At the 0.05 level, the population means are significantly different.

**Table S4.** Post hoc Tukey's test results for mean PC1 and PC2 values for each substrate and degradation grouping calculated from the IRRA spectral data between 1300-1900 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

|                 | PC1      | PC2 |   |     |      |   |   |                 |          |   |   |     |      |   |   |   |   |   |
|-----------------|----------|-----|---|-----|------|---|---|-----------------|----------|---|---|-----|------|---|---|---|---|---|
| Sample          | Mean     |     |   | Gro | oups |   |   | Sample Mean Gro |          |   |   | rou | oups |   |   |   |   |   |
| ITO 15x6        | 1.23862  | Α   |   |     |      |   |   | Silver 15x6     | 1.2347   | Α |   |     |      |   |   |   |   |   |
| ITO 15x5        | 1.20361  | Α   |   |     |      |   |   | Silver 15x5     | 0.93533  | Α | В |     |      |   |   |   |   |   |
| ITO 15x4        | 0.99734  | Α   | В |     |      |   |   | ITO 15x6        | 0.75762  | Α | В | С   |      |   |   |   |   |   |
| ITO 15x3        | 0.6765   | Α   | В |     |      |   |   | Silver 15x4     | 0.54122  | Α | В | С   | D    |   |   |   |   |   |
| ITO 15x2        | 0.55108  | Α   | В | С   |      |   |   | ITO 15x5        | 0.44843  | Α | В | С   | D    | Е |   |   |   |   |
| ITO 15x1        | 0.43436  | Α   | В | С   | D    |   |   | Silver 15x3     | 0.25746  |   | В | С   | D    | E | F |   |   |   |
| ITO Pristine    | 0.16178  |     | В | С   | D    | E |   | ITO 15x4        | 0.06212  |   |   | С   | D    | Е | F | G |   |   |
| Silver 15x6     | -0.30171 |     |   | С   | D    | E | F | ITO 15x3        | -0.12678 |   |   |     | D    | Е | F | G | Н |   |
| Silver 15x5     | -0.43836 |     |   |     | D    | E | F | Silver 15x2     | -0.28204 |   |   |     |      | E | F | G | Н | I |
| Silver 15x4     | -0.64096 |     |   |     |      | E | F | ITO 15x2        | -0.45661 |   |   |     |      |   | F | G | Н | I |
| Silver 15x3     | -0.74151 |     |   |     |      | Е | F | Silver 15x1     | -0.71167 |   |   |     |      |   |   | G | Н | I |
| Silver 15x2     | -0.9098  |     |   |     |      |   | F | Silver Pristine | -0.7638  |   |   |     |      |   |   |   | Н | I |
| Silver 15x1     | -1.1134  |     |   |     |      |   | F | ITO 15x1        | -0.82713 |   |   |     |      |   |   |   | Н | I |
| Silver Pristine | -1.11755 |     |   |     |      |   | F | ITO Pristine    | -1.06884 |   |   |     |      |   |   |   |   | Ι |



**Figure S12:** Box plot analysis on the first two PCs for IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures. Box plots for a) PC1 and b) PC2 values of spectra labeled by substrate type and exposure.

 Table S5.
 ANOVA of PC1 scores calculated from the IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

|       |    |                | PC1         | PC2      |         |    |                |                |         |         |
|-------|----|----------------|-------------|----------|---------|----|----------------|----------------|---------|---------|
|       | DF | Sum of Squares | Mean Square | F Value  | Prob>F  | DF | Sum of Squares | Mean<br>Square | F Value | Prob>F  |
| Model | 13 | 37.12349       | 2.85565     | 14.31793 | <0.0001 | 13 | 2.39956        | 0.18458        | 1.32453 | 0.22692 |
| Error | 56 | 11.16897       | 0.19945     |          |         | 56 | 7.80394        | 0.13936        |         |         |
| Total | 69 | 48.29246       |             |          |         | 69 | 10.20349       |                |         |         |

Alternative Hypothesis: The means of one or more levels are different.

At the 0.05 level, the population means are significantly different.

**Table S6.** Post hoc Tukey's test results for mean PC1 and PC2 values for each substrate and degradation grouping calculated from the IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

|                 | PC1      |   | PC2    |   |                 |          |        |  |
|-----------------|----------|---|--------|---|-----------------|----------|--------|--|
| Sample          | Mean     | ( | Groups |   | Sample          | Mean     | Groups |  |
| ITO 15x5        | 0.95379  | Α |        |   | Silver 15x6     | 0.42159  | Α      |  |
| ITO 15x6        | 0.9178   | Α |        |   | Silver 15x5     | 0.13975  | Α      |  |
| ITO 15x4        | 0.87902  | Α |        |   | ITO 15x4        | 0.13464  | Α      |  |
| ITO 15x3        | 0.62847  | Α |        |   | ITO 15x1        | 0.13055  | Α      |  |
| ITO 15x2        | 0.6064   | Α |        |   | ITO 15x2        | 0.10787  | Α      |  |
| ITO 15x1        | 0.59063  | Α |        |   | ITO 15x6        | 0.08144  | Α      |  |
| ITO Pristine    | 0.40366  | Α | В      |   | ITO 15x3        | 0.01492  | Α      |  |
| Silver 15x6     | -0.5156  |   | В      | С | ITO Pristine    | -0.01709 | Α      |  |
| Silver 15x5     | -0.59892 |   |        | С | ITO 15x5        | -0.03759 | Α      |  |
| Silver 15x4     | -0.71058 |   |        | С | Silver 15x4     | -0.0719  | Α      |  |
| Silver 15x3     | -0.73737 |   |        | С | Silver 15x2     | -0.14329 | Α      |  |
| Silver 15x2     | -0.75108 |   |        | С | Silver 15x3     | -0.17993 | Α      |  |
| Silver 15x1     | -0.83041 |   |        | С | Silver 15x1     | -0.2757  | Α      |  |
| Silver Pristine | -0.83581 |   |        | С | Silver Pristine | -0.30527 | A      |  |

#### VII. Linear discriminant analysis of IRRA spectral data

| LD | 1300-1900 cm <sup>-1</sup><br>% Variance | 1300-1900 cm <sup>-1</sup><br>Mean Accuracy | LD | 1300-1500 cm <sup>-1</sup><br>% Variance | 1300-1500 cm <sup>-1</sup><br>Mean Accuracy |
|----|------------------------------------------|---------------------------------------------|----|------------------------------------------|---------------------------------------------|
| 1  | 50.9                                     |                                             | 1  | 67.2                                     |                                             |
| 2  | 35.1                                     | 02 10/                                      | 2  | 21.6                                     | 76.00/                                      |
| 3  | 5.4                                      | 65.1%                                       | 3  | 3.9                                      | /0.0%                                       |
| 4  | 2.9                                      | repeats)                                    | 4  | 3.3                                      | repeats)                                    |
| 5  | 2.5                                      |                                             | 5  | 1.4                                      |                                             |
| 6  | 1.3                                      |                                             | 6  | 1.1                                      |                                             |

**Table S7:** Calculated linear discriminants, % variances, and mean accuracy calculated via k-fold crossvalidation for FBTF IRRA Spectral Data. Data classed by substrate type and degradation extent.



**Figure S13:** Box plot analysis on the first two LDs for IRRA spectral data between 1300-1900 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures. Box plots for a) LD1 and b) LD2 values for spectra labeled by substrate type and exposure.

| Table S8.       ANOVA of LD1 and LD2 scores calculated from the IRRA spectral data between 1300-1900 cm <sup>-1</sup> for FBTF on Ag and ITO |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| under sequential 15 min radiant exposures.                                                                                                   |

|       |    |                | LD1         |           | LD2     |    |                |             |            |         |  |
|-------|----|----------------|-------------|-----------|---------|----|----------------|-------------|------------|---------|--|
|       | DF | Sum of Squares | Mean Square | F Value   | Prob>F  | DF | Sum of Squares | Mean Square | F Value    | Prob>F  |  |
| Model | 13 | 30306.52175    | 2331.2709   | 2331.2709 | <0.0001 | 13 | 20916.94176    | 1608.99552  | 1608.99552 | <0.0001 |  |
| Error | 56 | 56             | 1           |           |         | 56 | 56             | 1           |            |         |  |
| Total | 69 | 30362.52175    |             |           |         | 69 | 20972.94176    |             |            |         |  |

Alternative Hypothesis: The means of one or more levels are different.

At the 0.05 level, the population means are significantly different.

| Table S9. Post hoc Tukey's test results for mean LD1 and LD2 values for each substrate and degradation          |
|-----------------------------------------------------------------------------------------------------------------|
| grouping calculated from the IRRA spectral data between 1300-1900 cm <sup>-1</sup> for FBTF on Ag and ITO under |
| sequential 15 min radiant exposures.                                                                            |

|                 | LD1           Sample         Mean         Groups           Iver Pristine         40.32131         A         A           Silver 15x1         40.0664         A         A         A |   |   |   |   |    |    |    |   |   |   |   |                 | LD2       | 2      |          |   |   |   |   |   |   |   |   |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|----|----|----|---|---|---|---|-----------------|-----------|--------|----------|---|---|---|---|---|---|---|---|--|
| Sample          | Mean                                                                                                                                                                              |   |   |   |   | Gr | ou | ps |   |   |   |   | Sample          | Mean      | Groups |          |   |   |   |   |   |   |   |   |  |
| Silver Pristine | 40.32131                                                                                                                                                                          | A |   |   |   |    |    |    |   |   |   |   | ITO Pristine    | 26.51384  | A      | <b>۱</b> | Τ |   |   |   |   |   |   | Τ |  |
| Silver 15x1     | 40.0664                                                                                                                                                                           | A |   |   |   |    |    |    |   |   |   |   | ITO 15x1        | 21.30336  |        | В        | 5 |   |   |   |   |   |   |   |  |
| Silver 15x2     | 22.95148                                                                                                                                                                          |   | В |   |   |    |    |    |   |   |   |   | ITO 15x6        | 17.078    |        |          | С |   |   |   |   |   |   | T |  |
| ITO Pristine    | 9.48042                                                                                                                                                                           |   |   | С |   |    |    |    |   |   |   |   | ITO 15x2        | 12.70772  |        |          |   | D |   |   |   |   |   |   |  |
| Silver 15x3     | 5.82834                                                                                                                                                                           |   |   |   | D |    |    |    |   |   |   |   | ITO 15x5        | 9.49317   |        |          |   |   | Ε |   |   |   |   |   |  |
| ITO 15x1        | 2.81612                                                                                                                                                                           |   |   |   |   | Ε  |    |    |   |   |   |   | ITO 15x4        | 7.27601   |        |          |   |   |   | F |   |   |   |   |  |
| Silver 15x4     | -2.53669                                                                                                                                                                          |   |   |   |   |    | F  |    |   |   |   |   | ITO 15x3        | 7.18155   |        |          |   |   |   | F |   |   |   |   |  |
| ITO 15x2        | -8.3206                                                                                                                                                                           |   |   |   |   |    |    | G  |   |   |   |   | Silver Pristine | 6.10408   | T      |          | T |   |   | F |   |   |   | 1 |  |
| Silver 15x5     | -12.11359                                                                                                                                                                         |   |   |   |   |    |    |    | Н |   |   |   | Silver 15x1     | -6.42757  |        |          |   |   |   |   | G |   |   |   |  |
| ITO 15x3        | -18.06308                                                                                                                                                                         |   |   |   |   |    |    |    |   | T |   |   | Silver 15x2     | -9.08658  |        |          |   |   |   |   |   | Н |   |   |  |
| ITO 15x6        | -18.77238                                                                                                                                                                         |   |   |   |   |    |    |    |   | 1 | J |   | Silver 15x3     | -18.06732 | T      |          | T |   |   |   |   |   | T | 1 |  |
| Silver 15x6     | -19.15876                                                                                                                                                                         |   |   |   |   |    |    |    |   | 1 | J |   | Silver 15x4     | -19.1788  |        |          |   |   |   |   |   |   | T |   |  |
| ITO 15x4        | -20.79747                                                                                                                                                                         |   |   |   |   |    |    |    |   |   | J | К | Silver 15x5     | -24.5736  |        |          |   |   |   |   |   |   |   | l |  |
| ITO 15x5        | -21.7015                                                                                                                                                                          |   |   |   |   |    |    |    |   |   |   | K | Silver 15x6     | -30.32386 | Τ      |          | Τ |   |   |   |   |   |   | K |  |



**Figure S14:** Box plot analysis on the first two LDs for IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures. Box plots for a) LD1 and b) LD2 values for spectra labeled by substrate type and exposure.

**Table S10.** ANOVA of LD1 and LD2 scores from the IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

|       |    |                | LD1         |            |         |    |                | LD2         |            |         |
|-------|----|----------------|-------------|------------|---------|----|----------------|-------------|------------|---------|
|       | DF | Sum of Squares | Mean Square | F Value    | Prob>F  | DF | Sum of Squares | Mean Square | F Value    | Prob>F  |
| Model | 13 | 75904.4534     | 5838.80411  | 5838.80411 | <0.0001 | 13 | 24407.91092    | 1877.53161  | 1877.53161 | <0.0001 |
| Error | 56 | 56             | 1           |            |         | 56 | 56             | 1           |            |         |
| Total | 69 | 75960.4534     |             |            |         | 69 | 24463.91092    |             |            |         |

Alternative Hypothesis: The means of one or more levels are different.

At the 0.05 level, the population means are significantly different.

**Table S11.** Post hoc Tukey's test results for mean LD1 and LD2 values for each substrate and degradation grouping calculated from the IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

|                 | L         | .D1 | L |   |   |     |    |   |   |   |   |                 | L         | .D2    |   |   |   |   |   |   |   |   |  |  |
|-----------------|-----------|-----|---|---|---|-----|----|---|---|---|---|-----------------|-----------|--------|---|---|---|---|---|---|---|---|--|--|
| Sample          | Mean      |     |   |   | Ģ | iro | up | s |   |   |   | Sample          | Mean      | Groups |   |   |   |   |   |   |   |   |  |  |
| ITO Pristine    | 41.98936  | A   |   |   |   |     |    |   |   |   |   | Silver 15x6     | 27.22769  | А      |   |   |   |   |   |   |   |   |  |  |
| ITO 15x6        | 36.45477  |     | В |   |   |     |    |   |   |   |   | ITO 15x6        | 25.56006  | А      |   |   |   |   |   |   |   |   |  |  |
| ITO 15x4        | 32.36957  |     |   | С |   |     |    |   |   |   |   | ITO 15x5        | 18.58031  |        | В |   |   |   |   |   |   |   |  |  |
| ITO 15x5        | 31.42006  |     |   | С |   |     |    |   |   |   |   | Silver 15x5     | 16.43145  |        | В |   |   |   |   |   |   |   |  |  |
| ITO 15x3        | 28.0858   |     |   |   | D |     |    |   |   |   |   | ITO 15x4        | 12.89016  |        |   | С |   |   |   |   |   |   |  |  |
| ITO 15x1        | 26.41866  |     |   |   | D |     |    |   |   |   |   | Silver 15x4     | 9.63178   |        |   |   | D |   |   |   |   |   |  |  |
| ITO 15x2        | 26.1226   |     |   |   | D |     |    |   |   |   |   | ITO 15x3        | 2.71473   |        |   |   |   | Е |   |   |   |   |  |  |
| Silver Pristine | -8.60122  |     |   |   |   | E   |    |   |   |   |   | Silver 15x3     | 1.67396   |        |   |   |   | Е |   |   |   |   |  |  |
| Silver 15x1     | -28.42129 |     |   |   |   |     | F  |   |   |   |   | ITO 15x2        | -4.2319   |        |   |   |   |   | F |   |   |   |  |  |
| Silver 15x6     | -30.67891 |     |   |   |   |     |    | G |   |   |   | Silver 15x2     | -15.67831 |        |   |   |   |   |   | G |   |   |  |  |
| Silver 15x2     | -33.61948 |     |   |   |   |     |    |   | н |   |   | ITO 15x1        | -16.30647 |        |   |   |   |   |   | G |   |   |  |  |
| Silver 15x5     | -38.56671 |     |   |   |   |     |    |   |   | T |   | ITO Pristine    | -24.22515 |        |   |   |   |   |   |   | Н |   |  |  |
| Silver 15x4     | -40.5398  |     |   |   |   |     |    |   |   | Ι | J | Silver 15x1     | -24.52673 |        |   |   |   |   |   |   | Н |   |  |  |
| Silver 15x3     | -42.43341 |     |   |   |   |     |    |   |   |   | J | Silver Pristine | -29.74157 |        |   |   |   |   |   |   |   | T |  |  |

#### VIII. Combined principal component-linear discriminant analysis of IRRA spectral data

**Table S12:** Calculated linear discriminants after PCA treatment, % variances, and mean accuracy calculated via k-fold cross validation for FBTF IRRA spectral data. Data was classed by substrate type and degradation extent.

| LD | 1300-1900 cm <sup>-1</sup><br>% Variance | 1300-1900 cm <sup>-1</sup><br>Mean Accuracy | LD | 1300-1500 cm <sup>-1</sup><br>% Variance | 1300-1500 cm <sup>-1</sup><br>Mean Accuracy |
|----|------------------------------------------|---------------------------------------------|----|------------------------------------------|---------------------------------------------|
| 1  | 51.5                                     |                                             | 1  | 64.1                                     |                                             |
| 2  | 32.8                                     | 60.40/                                      | 2  | 28.4                                     | 67 10/                                      |
| 3  | 8.5                                      | 69.4%                                       | 3  | 3.7                                      | 07.1%                                       |
| 4  | 3.1                                      | repeats)                                    | 4  | 2.0                                      | repeats)                                    |
| 5  | 1.7                                      |                                             | 5  | 0.83                                     |                                             |
| 6  | 0.99                                     |                                             | 6  | 0.31                                     |                                             |



**Figure S15:** Box plot analysis on the first two LDs after PCA treatment for IRRA spectral data between 1300-1900 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures. Box plots for a) LD1 and b) LD2 values for spectra labeled by substrate type and exposure.

| Table S13. ANOVA of LD1 and LD2 scores calculated after PCA treatment from the IRRA spectral data between 1300-1900 cn | <sup>1-1</sup> |
|------------------------------------------------------------------------------------------------------------------------|----------------|
| for FBTF on Ag and ITO under sequential 15 min radiant exposures.                                                      |                |

|       |    |                | LD1         |            |         |    |                | LD2            |            |         |
|-------|----|----------------|-------------|------------|---------|----|----------------|----------------|------------|---------|
|       | DF | Sum of Squares | Mean Square | F Value    | Prob>F  | DF | Sum of Squares | Mean<br>Square | F Value    | Prob>F  |
| Model | 13 | 44749.02949    | 3442.23304  | 3442.23304 | <0.0001 | 13 | 28540.28418    | 2195.40648     | 2195.40648 | <0.0001 |
| Error | 56 | 56             | 1           |            |         | 56 | 56             | 1              |            |         |
| Total | 69 | 44805.02949    |             |            |         | 69 | 28596.28418    |                |            |         |

Alternative Hypothesis: The means of one or more levels are different.

At the 0.05 level, the population means are significantly different.

 Table S14. Post hoc Tukey's test results for mean LD1 and LD2 values after PCA treatment for each substrate and degradation grouping calculated from the IRRA spectral data between 1300-1900 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

|                 | LD1<br>Sample Mean Groups |   |   |   |   |    |    |    |   |   |   |   |                 | L         | D2 |   |   |     |      |   |   |   |
|-----------------|---------------------------|---|---|---|---|----|----|----|---|---|---|---|-----------------|-----------|----|---|---|-----|------|---|---|---|
| Sample          | Mean                      |   |   |   |   | Gr | ou | ps |   |   |   |   | Sample          | Mean      |    |   |   | Gro | oups | , |   |   |
| Silver Pristine | 49.93391                  | Α |   |   |   |    |    |    |   |   |   |   | ITO 15x6        | 26.2856   | Α  |   |   |     |      |   |   |   |
| ITO Pristine    | 48.49173                  | А |   |   |   |    |    |    |   |   |   |   | ITO 15x5        | 24.84676  | Α  |   |   |     |      |   |   |   |
| ITO 15x1        | 22.66808                  |   | В |   |   |    |    |    |   |   |   |   | ITO 15x4        | 19.96638  |    | В |   |     |      |   |   |   |
| Silver 15x1     | 20.03374                  |   |   | С |   |    |    |    |   |   |   |   | ITO 15x3        | 18.60932  |    | В |   |     |      |   |   |   |
| Silver 15x2     | 5.13335                   |   |   |   | D |    |    |    |   |   |   |   | ITO Pristine    | 18.52116  |    | В |   |     |      |   |   |   |
| ITO 15x2        | 3.27389                   |   |   |   | D |    |    |    |   |   |   |   | ITO 15x1        | 15.4393   |    |   | С |     |      |   |   |   |
| ITO 15x3        | -9.98027                  |   |   |   |   | Ε  |    |    |   |   |   |   | ITO 15x2        | 15.17789  |    |   | С |     |      |   |   |   |
| ITO 15x6        | -13.36021                 |   |   |   |   |    | F  |    |   |   |   |   | Silver 15x5     | -13.57369 |    |   |   | D   |      |   |   |   |
| Silver 15x3     | -15.21215                 |   |   |   |   |    | F  | G  |   |   |   |   | Silver 15x4     | -16.36964 |    |   |   |     | E    |   |   |   |
| ITO 15x5        | -16.59953                 |   |   |   |   |    |    | G  | н |   |   |   | Silver 15x3     | -19.24581 |    |   |   |     |      | F |   |   |
| ITO 15x4        | -17.4336                  |   |   |   |   |    |    |    | н |   |   |   | Silver Pristine | -20.6476  |    |   |   |     |      | F | G |   |
| Silver 15x4     | -19.80145                 |   |   |   |   |    |    |    |   | T |   |   | Silver 15x6     | -21.28576 |    |   |   |     |      | F | G |   |
| Silver 15x5     | -24.17487                 |   |   |   |   |    |    |    |   |   | J |   | Silver 15x2     | -22.80785 |    |   |   |     |      |   | G | Н |
| Silver 15x6     | -32.97261                 |   |   |   |   |    |    |    |   |   |   | K | Silver 15x1     | -24.91605 |    |   |   |     |      |   |   | Н |



**Figure S16:** Box plot analysis on the first two LDs after PCA treatment for IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures. Box plots for a) LD1 and b) LD2 values for spectra labeled by substrate type and exposure.

| Table \$15. ANOVA of LD1 and LD2 scores calculated after PCA treatment from the IRRA spectral data between 1300-1500 cm <sup>-1</sup> for FBTF of | วท |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Ag and ITO under sequential 15 min radiant exposures.                                                                                             |    |

|       |    |                | LD1         |            |         |    |                | LD2         |            |         |
|-------|----|----------------|-------------|------------|---------|----|----------------|-------------|------------|---------|
|       | DF | Sum of Squares | Mean Square | F Value    | Prob>F  | DF | Sum of Squares | Mean Square | F Value    | Prob>F  |
| Model | 13 | 66440.98849    | 5110.84527  | 5110.84527 | <0.0001 | 13 | 38124.95754    | 2932.68904  | 3368.73339 | <0.0001 |
| Error | 56 | 56             | 1           |            |         | 56 | 48.75143       | 0.87056     |            |         |
| Total | 69 | 66496.98849    |             |            |         | 69 | 38173.70898    |             |            |         |

Alternative Hypothesis: The means of one or more levels are different. At the 0.05 level, the population means are significantly different.

**Table S16.** Post hoc Tukey's test results for mean LD1 and LD2 values after PCA treatment for each substrate and degradation grouping calculated from the IRRA spectral data between 1300-1500 cm<sup>-1</sup> for FBTF on Ag and ITO under sequential 15 min radiant exposures.

|                 | LD1<br>Sample Mean Groups |   |   |   |   |     |    |   |   |   |                 |           |   | LD | 2 |   |   |     |    |   |   |   |   |   |
|-----------------|---------------------------|---|---|---|---|-----|----|---|---|---|-----------------|-----------|---|----|---|---|---|-----|----|---|---|---|---|---|
| Sample          | Mean                      |   |   |   | G | rou | ps |   |   |   | Sample          | Mean      |   |    |   |   | ( | Gro | up | 5 |   |   |   |   |
| Silver 15x2     | 39.21655                  | A |   |   |   |     |    |   |   |   | ITO Pristine    | 47.80425  | Α |    |   |   |   |     |    |   |   |   |   |   |
| Silver 15x1     | 37.88632                  | Α |   |   |   |     |    |   |   |   | Silver Pristine | 39.19274  |   | В  |   |   |   |     |    |   |   |   |   |   |
| Silver 15x3     | 32.63891                  |   | В |   |   |     |    |   |   |   | Silver 15x1     | 13.97533  |   |    | С |   |   |     |    |   |   |   |   |   |
| Silver 15x4     | 31.02216                  |   | В |   |   |     |    |   |   |   | ITO 15x1        | 5.62796   |   |    |   | D |   |     |    |   |   |   |   |   |
| Silver 15x5     | 25.46461                  |   |   | С |   |     |    |   |   |   | Silver 15x2     | 2.74752   |   |    |   |   | E |     |    |   |   |   |   |   |
| Silver Pristine | 24.36609                  |   |   | С |   |     |    |   |   |   | ITO 15x2        | -1.22146  |   |    |   |   |   | F   |    |   |   |   |   |   |
| Silver 15x6     | 17.31115                  |   |   |   | D |     |    |   |   |   | ITO 15x3        | -4.04377  |   |    |   |   |   |     | G  |   |   |   |   |   |
| ITO 15x1        | -14.87408                 |   |   |   |   | E   |    |   |   |   | Silver 15x3     | -7.14299  |   |    |   |   |   |     |    | н |   |   |   |   |
| ITO 15x2        | -21.57812                 |   |   |   |   |     | F  |   |   |   | ITO 15x6        | -11.08399 |   |    |   |   |   |     |    |   | Τ |   |   |   |
| ITO 15x3        | -28.83077                 |   |   |   |   |     |    | G |   |   | ITO 15x4        | -11.54035 |   |    |   |   |   |     |    |   | Τ |   |   |   |
| ITO 15x4        | -30.30695                 |   |   |   |   |     |    | G |   |   | Silver 15x4     | -12.87271 |   |    |   |   |   |     |    |   | Ι |   |   |   |
| ITO Pristine    | -30.64877                 |   |   |   |   |     |    | G |   |   | Silver 15x5     | -18.60559 |   |    |   |   |   |     |    |   |   | J |   |   |
| ITO 15x5        | -36.66806                 |   |   |   |   |     |    |   | Н |   | Silver 15x6     | -27.77536 |   |    |   |   |   |     |    |   |   |   | Κ |   |
| ITO 15x6        | -44.99904                 |   |   |   |   |     |    |   |   | I | ITO 15x5        | -44.99904 |   |    |   |   |   |     |    |   |   |   |   | L |

#### IX. <u>References</u>

- 1. Pagliara, S.; Vitiello, M. S.; Camposeo, A.; Polini, A.; Cingolani, R.; Scamarcio, G.; Pisignano, D., Optical Anisotropy in Single Light-Emitting Polymer Nanofibers. *J. Phys. Chem. C* **2011**, *115* (42), 20399-20405.
- 2. Zhao, W.; Cao, T.; White, J. M., On the Origin of Green Emission in Polyfluorene Polymers: The Roles of Thermal Oxidation Degradation and Crosslinking. *Adv. Funct. Mater.* **2004**, *14* (8), 783-790.
- 3. Pakulski, P.; Pinkowicz, D., 1,2,5-Thiadiazole 1,1-dioxides and Their Radical Anions: Structure, Properties, Reactivity, and Potential Use in the Construction of Functional Molecular Materials. *Molecules* **2021**, *26* (16).
- 4. Venkatesan, R.; Somanathan, N.; Rajeswari, N., Structure and Properties of Functionalized Polyfluorenone Containing Hetero Aromatic Side Chains. *Chin. J. Polym. Sci.* **2014**, *32*, 667-674.