## **Supplementary Information for**

## **Intricate carrier dynamics of bismuth halide perovskites: localized excitons and polarons**

Naveen Kumar Tailor,<sup>1,2</sup> Sanchi Monga,<sup>3</sup> Saurabh K. Saini<sup>4,5</sup>, Mahesh Kumar<sup>5,6</sup>, Saswata Bhattacharya,<sup>3,\*</sup> Soumitra Satapathi<sup>1,2,\*</sup>

<sup>1</sup>Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India

<sup>2</sup>Center for Sustainable Energy, Indian Institute of Technology Roorkee, Roorkee 247667, India

<sup>3</sup>Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

<sup>4</sup>CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi, 110012 India

<sup>5</sup>Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India

<sup>6</sup>Innovation Management Directorate, Anusandhan Bhawan, New Delhi 110001

\*Corresponding Author: <a href="mailto:saswata@physics.iitd.ac.in">saswata@physics.iitd.ac.in</a>, <a href="mailto:soumitrasatapathi@gmail.com">soumitrasatapathi@gmail.com</a>



**Figure S1.** (a) Image of fabricated nanocrystals Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, and FA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>. (b) Image under UV light illumination.



**Figure S2.** TEM image of the (a) Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs, (c) MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs, (e) MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs. Reciprocal pattern of (b) Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs, (d) MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs, and (f) FA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs.



Figure S3. Size distribution of (a) Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs, (b) MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs and (c) FA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> NCs.



Figure S4. Powder XRD pattern of fabricated nanocrystal Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, and FA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> powder.



**Figure S5.** Calculated bandgap from tauc plot method. (a) indirect bandgap and (b) direct bandgap for all three systems.



**Figure S6.** Atom-projected partial density of states (pDOS) for (a)  $Cs_3Bi_2I_9$  (b)  $MA_3Bi_2I_9$  and (c)  $FA_3Bi_2I_9$ .



**Figure S7.** Electronic (solid) and optical spectra (dotted) of  $Cs_3Bi_2I_9$ ,  $MA_3Bi_2I_9$ , and  $FA_3Bi_2I_9$ , estimated using  $G_0W_0$  and mBSE on top of PBE exchange-correlation functional.



**Figure S8.** Femtosecond transient absorption (fs-TA) spectra in response to 350 nm optical excitation. Early time spectra up to 50 ps for (a) Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, (b) MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, and (c) FA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>.



**Figure S9.** Smoothed second derivative of the steady-state absorption spectrum of  $Cs_3Bi_2I_9$ ,  $MA_3Bi_2I_9$ , and  $FA_3Bi_2I_9$  (a) wavelength scale and (b) energy scale.



**Figure S10.** Kinetics at different probe wavelengths for all three systems. (a) Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> at 475 nm, (b) MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> at 479 nm, (c) FA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> at 473 nm, (d) Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> at 567 nm, (b) MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> at 590 nm, (c) FA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> at 579 nm.