Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

# Supporting Information Fused Hexacyclic Thienoquinoids Terminated by Indandione for Low-Bandgap Organic Semiconductors

Yiyang Xu, Tian Du, Yunfeng Deng\*, Yanhou Geng

#### 1. Instruments

<sup>1</sup>H NMR, <sup>13</sup>C NMR and <sup>19</sup>F NMR spectra were measured by a Bruker 400 MHz spectrometer with chloroform-d (CDCl<sub>3</sub>) and 1,1,2,2-tetrachloroethane- $d_2$  (CD<sub>2</sub>Cl<sub>4</sub>) as the solvent and tetramethylsilane (TMS) as internal standard. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra was recorded on a Bruker/AutoflexIII Smartbean MALDI mass spectrometer with 2-[(2E)-3-(4-tertbuthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as the matrix in a reflection mode. Thermogravimetric analysis (TGA) was carried out on a TA Q50 thermogravimetric analyzer with the heating rate of 10 °C min<sup>-1</sup> at a nitrogen flow. Differential scanning calorimetry (DSC) was performed by a Perkin-Elmer DSC7 thermal analyzer with a heating/cooling rate of 10 °C min<sup>-1</sup> under nitrogen. UV-vis-NIR absorption spectra were measured with Shimadzu UV3600 plus spectrometer. Cyclic voltammograms (CV, scan rate: 100 mV s<sup>-1</sup>) were measured on a CHI660E electrochemical analyzer with a three-electrode cell with tetrabutylammonium hexafluorophosphate (Bu<sub>4</sub>NPF<sub>6</sub>, 0.1 mol L<sup>-1</sup>) as the supporting electrolyte in anhydrous dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>). A Pt disk with 2 mm diameter, a Pt wire and a saturated calomel electrode (SCE) were used as working, counter and reference electrodes, respectively. The HOMO and LUMO energy levels were calculated according to the equations:  $E_{HOMO} = -(4.80 + E_{onset}^{oxi}) \text{ eV}$ ,  $E_{LUMO} = -(4.8 + E_{onset}^{red}) \text{ eV}$  in which  $E_{onset}^{oxi}$ and  $E_{onset}^{red}$  represent the oxidation and reduction onset-potentials against the half potential of  $Fc/Fc^+$  ( $E^o = 0.42 \text{ eV}$ ). Atomic force microscopy (AFM) measurements were carried out in tapping mode on a Bruker MultiMode 8 atomic force microscope. Density functional theory (DFT) calculated frontier molecular orbital (FMO) distribution and time-dependent DFT (TD-DFT) were conducted by Gaussian 09 with B3LYP/6-31G (d, p) basis set.<sup>1-3</sup> For simplifying, the side chains were replaced as methyl groups. Natural orbital occupation number (NOON) calculations were done by spin unrestricted UCAM-B3LYP/6-31G (d, p) method and the diradical character  $(y_0)$ was calculated according to Yamaguchi's scheme:  $y_0 = 1 - (2T/(1 + T^2))$ , and T =  $(n_{HOMO} - n_{LUMO})/2$  ( $n_{HOMO}$  is the occupation number of the HOMO,  $n_{LUMO}$  is the

occupation number of the LUMO).<sup>4,5</sup> NICS values were calculated (B3LYP/6-31G (d, p)) using the standard GIAO procedure. The charge transfer integrals for the molecular dimer extracted from the experimental crystal structures were calculated at M06-2X/Def2-SVP level in the CT module of NWchem package.

### 2. Organic thin-film transistors (OTFTs) fabrication and measurements

The charge transport properties of the molecules were characterized using top gate/bottom contact (TG/BC) OTFTs. Highly n-doped silicon wafers covered with a 300 nm thick thermally grown SiO<sub>2</sub> layer were used as substrates. The substrates were washed by an ultrasonic cleaner with deionized water, acetone and isopropanol, respectively, and then dried under a nitrogen flow and heated at 120 °C for 10 min. Au (~30 nm) was deposited on the silicon substrate as source and drain electrodes with shadow mask of W/L = 112 ( $W = 5600 \mu$ m,  $L = 50 \mu$ m). Ba(OH)<sub>2</sub> in methanol (2 mg mL<sup>-1</sup>) was spin-casted at 5000 rpm for 90 s and annealed at 60 °C for 5 min on silicon substrate deposited with Au. Subsequently, the semiconductor films were prepared by spin-coating of the chloroform solutions with a concentration of 5 mg mL<sup>-1</sup>, followed by annealing 120 °C for 10 min. As the dielectric, Cytop was spin-casted at 2000 rpm for 2 min and annealed at 100 °C for 40 min. Finally, Al (80 nm) was vacuum-evaporated as the gate electrode. OTFT devices were measured under ambient conditions with Keysight B1500A source/measure units. Saturation mobilities were

$$\mu_{sat}(V_G) = \frac{\partial I_{D, sat}}{\partial V_G} \cdot \frac{L}{WC_i(V_G - V_T)}.$$

calculated according to equatio

## 3. Supplementary Data





Figure S2. <sup>1</sup>H NMR spectrum of Q4T-4F (400 MHz,  $C_2D_2Cl_4$ ).



Figure S3. <sup>13</sup>C NMR spectrum of Q4T (100 MHz, CDCl<sub>3</sub>).



Figure S4. <sup>13</sup>C NMR spectrum of Q4T-4F (100 MHz, CDCl<sub>3</sub>).



124.7 -124.9 -125.1 -125.3 -125.5 -125.7 -125.9 -126.1 -126.3 -126.5 -126.7 -126.9 -127.1 -127  $\delta\,ppm$ 

Figure S5. <sup>19</sup>F NMR spectrum of Q4T-4F (376 MHz, CDCl<sub>3</sub>).



Figure S6. High-resolution MALDI-TOF mass spectra of (a) Q4T and (b) Q4T-4F.



Figure S7. TGA curves of Q4T and Q4T-4F in N<sub>2</sub> with a heating rate of 10 °C min<sup>-1</sup>.



Figure S8. DSC curves of Q4T and Q4T-4F in  $N_2$  with a heating/cooling rate of 10

°C min<sup>-1</sup>.



Figure S9. The bond lengths of Q4T and Q4T-4F.



indacenodithiophene Figure S10. The NICS(1)zz values of 4T and indacenodithiophene.



Figure S11. The TD-DFT calculated absorption of Q4T and Q4T-4F.



Figure S12. Variable-time <sup>1</sup>H NMR spectra of compound Q4T (400 MHz, C<sub>2</sub>D<sub>2</sub>Cl<sub>4</sub>).



Figure S13. Variable-time <sup>1</sup>H NMR spectra of compound Q4T-4F (400 MHz,  $C_2D_2Cl_4$ ).



Figure S14. Solution ( $10^{-5}$  mol L<sup>-1</sup> in *o*-DCB) UV-*vis*-NIR absorption spectra of compounds (a) Q4T and (b) Q4T-4F for different time.



**Figure S15.** Solution (10<sup>-5</sup> mol L<sup>-1</sup> in *o*-DCB) UV-*vis*-NIR absorption spectra of (a) **Q4T** and (b) **Q4T-4F** by UV irradiation for different time.



Figure S16. (a) In-plane and (b) out-of-plane film GIXRD patterns of Q4T and Q4T-4F before and after thermal annealing.



Figure S17. AFM height images (2  $\mu$ m × 2  $\mu$ m) of pristine (a) Q4T and (b) Q4T-4F and annealed (c) Q4T and (d) Q4T-4F thin films.



**Figure S18.** Ambient stability of **Q4T** and **Q4T-4F** based OTFTs stored with a relative humidity of *ca*. 40%.

# 4. X-ray crystallography

The single crystals of compounds Q4T and Q4T-4F were grown by diffusion of methanol into their toluene solutions. Single crystals data collections were performed at 213 K for Q4T and Q4T-4F on a SuperNova diffractometer, using graphite-monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å. The data were collected on a "Bruker

APEX-II CCD" diffractometer. Using Olex2, these structures were solved with the ShelXT and refined with the ShelXT97 refinement package using Least Squares minimization. Refinement was performed on  $F^2$  anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters.

|                                          | 0.1T                                              |                              |
|------------------------------------------|---------------------------------------------------|------------------------------|
| Identification code                      | Q4T                                               |                              |
| Empirical formula                        | C82 H78 O4 S4                                     |                              |
| Formula weight                           | 1255.68                                           |                              |
| Temperature                              | 213.00 K                                          |                              |
| Wavelength                               | 1.34139 Å                                         |                              |
| Crystal system                           | Triclinic                                         |                              |
| Space group                              | P-1                                               |                              |
| Unit cell dimensions                     | a = 14.306(12) Å                                  | $\alpha = 94.32(3)^{\circ}.$ |
|                                          | b = 17.755(16) Å                                  | $\beta = 112.18(2)^{\circ}.$ |
|                                          | c = 18.065(16)  Å                                 | $\gamma = 96.58(3)^{\circ}.$ |
| Volume                                   | 4186(6) Å <sup>3</sup>                            |                              |
| Ζ                                        | 2                                                 |                              |
| Density (calculated)                     | 0.996 Mg/m <sup>3</sup>                           |                              |
| Absorption coefficient                   | 0.893 mm <sup>-1</sup>                            |                              |
| F(000)                                   | 1332                                              |                              |
| Crystal size                             | 0.06 x 0.05 x 0.01 mm <sup>3</sup>                |                              |
| Theta range for data collection          | 3.386 to 55.418°.                                 |                              |
| Index ranges                             | -17<=h<=17, -21<=k<=21, -19<=l<=21                |                              |
| Reflections collected                    | 40692                                             |                              |
| Independent reflections                  | 15453 [R(int) = 0.1404]                           |                              |
| Completeness to theta = $53.594^{\circ}$ | 98.8 %                                            |                              |
| Absorption correction                    | Semi-empirical from equivalents                   |                              |
| Max. and min. transmission               | 0.7508 and 0.3279                                 |                              |
| Refinement method                        | Full-matrix-block least-squares on F <sup>2</sup> |                              |
| Data / restraints / parameters           | 15453 / 121 / 815                                 |                              |
| Goodness-of-fit on F <sup>2</sup>        | 0.854                                             |                              |
| Final R indices [I>2sigma(I)]            | R1 = 0.1390, wR2 = 0.3288                         |                              |
| R indices (all data)                     | R1 = 0.2254, wR2 = 0.4281                         |                              |
| Extinction coefficient                   | n/a                                               |                              |

 Table S1. Crystal data and structure refinement for compound Q4T.

Largest diff. peak and hole

0.568 and -0.354 e.Å $^{-3}$ 

 Table S2. Crystal data and structure refinement for compound Q4T-4F.

| Identification code<br>Empirical formula<br>Formula weight<br>Temperature<br>Wavelength<br>Crystal system<br>Space group                                                                      | Q4T-4F<br>C82 H68 F4 O4 S4<br>1321.60<br>212.99 K<br>1.34139 Å<br>Triclinic<br>P-1                                                                            | 76 520/10/0                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Unit cen dimensions                                                                                                                                                                           | a = 15.040(5) A                                                                                                                                               | $\alpha = 70.330(10)$ .            |
|                                                                                                                                                                                               | b = 16.361(2) A                                                                                                                                               | $\beta = 69.642(10)^{\circ}.$      |
|                                                                                                                                                                                               | c = 18.598(4) Å                                                                                                                                               | $\gamma \Box = 73.720(9)^{\circ}.$ |
| Volume                                                                                                                                                                                        | 3694.3(12) Å <sup>3</sup>                                                                                                                                     |                                    |
| Z                                                                                                                                                                                             | 2                                                                                                                                                             |                                    |
| Density (calculated)                                                                                                                                                                          | 1.188 Mg/m <sup>3</sup>                                                                                                                                       |                                    |
| Absorption coefficient                                                                                                                                                                        | 1.080 mm <sup>-1</sup>                                                                                                                                        |                                    |
| F(000)                                                                                                                                                                                        | 1384                                                                                                                                                          |                                    |
| Crystal size                                                                                                                                                                                  | 0.08 x 0.01 x 0.01 mm <sup>3</sup>                                                                                                                            |                                    |
| Theta range for data collection<br>Index ranges<br>Reflections collected<br>Independent reflections<br>Completeness to theta = 53.594°<br>Absorption correction<br>Max. and min. transmission | 3.505 to 55.363°.<br>-16<=h<=16, -19<=k<=19, -20<=l<=22<br>48613<br>14016 [R(int) = 0.0933]<br>99.7 %<br>Semi-empirical from equivalents<br>0.7508 and 0.4511 |                                    |
| Refinement method                                                                                                                                                                             | Full-matrix least-squares on F <sup>2</sup>                                                                                                                   |                                    |
| Data / restraints / parameters                                                                                                                                                                | 14016 / 79 / 851                                                                                                                                              |                                    |
| Goodness-of-fit on F <sup>2</sup>                                                                                                                                                             | 0.891                                                                                                                                                         |                                    |
| Final R indices [I>2sigma(I)]<br>R indices (all data)<br>Extinction coefficient                                                                                                               | R1 = 0.0922, wR2 = 0.2035<br>R1 = 0.1595, wR2 = 0.2466<br>n/a                                                                                                 |                                    |
| Largest diff. peak and hole                                                                                                                                                                   | 0.615 and -0.408 e.Å <sup>-3</sup>                                                                                                                            |                                    |

#### 5. References

[1] Gaussian 09; Revision A.2; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,
E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.
J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts,
R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J.
W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J.
V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, **2009**.

- [2] Becke, A. D. Density functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648.
- [3] Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257.
- [4] Yamanaka, S.; Okumura, M.; Nakano M.; Yamaguchi, K. EHF Theory of Chemical Reactions Part 4. UNO CASSCF, UNO CASPT2 and R (U) HF CoupledCluster (CC) Wavefunctions. *J. Mol. Struct.* 1994, *310*, 205.
- [5] Kamada, K.; Ohta, K.; Shimizu, A.; Kubo, T.; Kishi, R.; Takahashi, H.; Botek, E.; Champagne B.; Nakano, M. Singlet Diradical Character from Experiment. *J. Phys. Chem. Lett.* 2010, *1*, 937.