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1. Instruments

1H NMR, 13C NMR and 19F NMR spectra were measured by a Bruker 400 MHz 

spectrometer with chloroform-d (CDCl3) and 1,1,2,2-tetrachloroethane-d2 (CD2Cl4) as 

the solvent and tetramethylsilane (TMS) as internal standard. Matrix-assisted laser 

desorption ionization time-of-flight (MALDI-TOF) mass spectra was recorded on a 

Bruker/AutoflexIII Smartbean MALDI mass spectrometer with 2-[(2E)-3-(4-tert-

buthylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) as the matrix in a 

reflection mode. Thermogravimetric analysis (TGA) was carried out on a TA Q50 

thermogravimetric analyzer with the heating rate of 10 °C min-1 at a nitrogen flow. 

Differential scanning calorimetry (DSC) was performed by a Perkin-Elmer DSC7 

thermal analyzer with a heating/cooling rate of 10 °C min-1 under nitrogen. UV-vis-

NIR absorption spectra were measured with Shimadzu UV3600 plus spectrometer. 

Cyclic voltammograms (CV, scan rate: 100 mV s1) were measured on a CHI660E 

electrochemical analyzer with a three-electrode cell with tetrabutylammonium 

hexafluorophosphate (Bu4NPF6, 0.1 mol L1) as the supporting electrolyte in anhydrous 

dichloromethane (CH2Cl2). A Pt disk with 2 mm diameter, a Pt wire and a saturated 

calomel electrode (SCE) were used as working, counter and reference electrodes, 

respectively. The HOMO and LUMO energy levels were calculated according to the 

equations:  = - (4.80 + ) eV,  = - (4.8 + ) eV in which  𝐸𝐻𝑂𝑀𝑂 𝐸 𝑜𝑥𝑖
𝑜𝑛𝑠𝑒𝑡 𝐸𝐿𝑈𝑀𝑂 𝐸 𝑟𝑒𝑑

𝑜𝑛𝑠𝑒𝑡 𝐸 𝑜𝑥𝑖
𝑜𝑛𝑠𝑒𝑡

and  represent the oxidation and reduction onset-potentials against the half 𝐸 𝑟𝑒𝑑
𝑜𝑛𝑠𝑒𝑡

potential of Fc/Fc+ (Eo = 0.42 eV). Atomic force microscopy (AFM) measurements 

were carried out in tapping mode on a Bruker MultiMode 8 atomic force microscope. 

Density functional theory (DFT) calculated frontier molecular orbital (FMO) 

distribution and time-dependent DFT (TD-DFT) were conducted by Gaussian 09 with 

B3LYP/6-31G (d, p) basis set.1-3 For simplifying, the side chains were replaced as 

methyl groups. Natural orbital occupation number (NOON) calculations were done by 

spin unrestricted UCAM-B3LYP/6-31G (d, p) method and the diradical character (y0) 

was calculated according to Yamaguchi’s scheme: y0 = 1 - (2T/(1 + T2)), and T = 

(nHOMO – nLUMO)/2 (nHOMO is the occupation number of the HOMO, nLUMO is the 
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occupation number of the LUMO).4,5 NICS values were calculated (B3LYP/6-31G (d, 

p)) using the standard GIAO procedure. The charge transfer integrals for the molecular 

dimer extracted from the experimental crystal structures were calculated at M06-

2X/Def2-SVP level in the CT module of NWchem package.

2. Organic thin-film transistors (OTFTs) fabrication and measurements

The charge transport properties of the molecules were characterized using top 

gate/bottom contact (TG/BC) OTFTs. Highly n-doped silicon wafers covered with a 

300 nm thick thermally grown SiO2 layer were used as substrates. The substrates were 

washed by an ultrasonic cleaner with deionized water, acetone and isopropanol, 

respectively, and then dried under a nitrogen flow and heated at 120 °C for 10 min. Au 

(~30 nm) was deposited on the silicon substrate as source and drain electrodes with 

shadow mask of W/L = 112 (W = 5600 μm, L = 50 μm). Ba(OH)2 in methanol (2 mg 

mL-1) was spin-casted at 5000 rpm for 90 s and annealed at 60 °C for 5 min on silicon 

substrate deposited with Au. Subsequently, the semiconductor films were prepared by 

spin-coating of the chloroform solutions with a concentration of 5 mg mL-1, followed 

by annealing 120 °C for 10 min. As the dielectric, Cytop was spin-casted at 2000 rpm 

for 2 min and annealed at 100 °C for 40 min. Finally, Al (80 nm) was vacuum-

evaporated as the gate electrode. OTFT devices were measured under ambient 

conditions with Keysight B1500A source/measure units. Saturation mobilities were 

calculated according to equation:  .
𝜇𝑠𝑎𝑡(𝑉𝐺) =  

∂𝐼𝐷,  𝑠𝑎𝑡

∂𝑉𝐺
∙

𝐿
𝑊𝐶𝑖

1
(𝑉𝐺 ‒ 𝑉𝑇)

3. Supplementary Data
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Figure S1. 1H NMR spectrum of Q4T (400 MHz, C2D2Cl4).

Figure S2. 1H NMR spectrum of Q4T-4F (400 MHz, C2D2Cl4).
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Figure S3. 13C NMR spectrum of Q4T (100 MHz, CDCl3).

Figure S4. 13C NMR spectrum of Q4T-4F (100 MHz, CDCl3).
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Figure S5. 19F NMR spectrum of Q4T-4F (376 MHz, CDCl3).

Figure S6. High-resolution MALDI-TOF mass spectra of (a) Q4T and (b) Q4T-4F.

Figure S7. TGA curves of Q4T and Q4T-4F in N2 with a heating rate of 10 ℃ min-1.
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Figure S8. DSC curves of Q4T and Q4T-4F in N2 with a heating/cooling rate of 10 

℃ min-1.

Figure S9. The bond lengths of Q4T and Q4T-4F. 
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Figure S10. The NICS(1)zz values of 4T and indacenodithiophene. 
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Figure S11. The TD-DFT calculated absorption of Q4T and Q4T-4F.

Figure S12. Variable-time 1H NMR spectra of compound Q4T (400 MHz, C2D2Cl4).



S9

Figure S13. Variable-time 1H NMR spectra of compound Q4T-4F (400 MHz, 

C2D2Cl4).

Figure S14. Solution (10-5 mol L-1 in o-DCB) UV-vis-NIR absorption spectra of 

compounds (a) Q4T and (b) Q4T-4F for different time.
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Figure S15. Solution (10-5 mol L-1 in o-DCB) UV-vis-NIR absorption spectra of (a) 

Q4T and (b) Q4T-4F by UV irradiation for different time.

Figure S16. (a) In-plane and (b) out-of-plane film GIXRD patterns of Q4T and Q4T-

4F before and after thermal annealing.
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Figure S17. AFM height images (2 μm × 2 μm) of pristine (a) Q4T and (b) Q4T-4F 

and annealed (c) Q4T and (d) Q4T-4F thin films.
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Figure S18. Ambient stability of Q4T and Q4T-4F based OTFTs stored with a relative 

humidity of ca. 40%.

4. X-ray crystallography 

The single crystals of compounds Q4T and Q4T-4F were grown by diffusion of 

methanol into their toluene solutions. Single crystals data collections were performed 

at 213 K for Q4T and Q4T-4F on a SuperNova diffractometer, using graphite-

monochromated Mo Kα radiation (λ = 0.71073 Å. The data were collected on a “Bruker 
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APEX-II CCD” diffractometer. Using Olex2, these structures were solved with the 

ShelXT and refined with the ShelXT97 refinement package using Least Squares 

minimization. Refinement was performed on F2 anisotropically for all the non-

hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were 

placed at the calculated positions and were included in the structure calculation without 

further refinement of the parameters. 
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Table S1. Crystal data and structure refinement for compound Q4T.

Identification code Q4T
Empirical formula C82 H78 O4 S4
Formula weight 1255.68
Temperature 213.00 K
Wavelength 1.34139 Å
Crystal system Triclinic
Space group P-1

Unit cell dimensions a = 14.306(12) Å α= 94.32(3)°.

b = 17.755(16) Å β= 112.18(2)°.

c = 18.065(16) Å γ = 96.58(3)°.

Volume 4186(6) Å3

Z 2

Density (calculated) 0.996 Mg/m3

Absorption coefficient 0.893 mm-1

F(000) 1332

Crystal size 0.06 x 0.05 x 0.01 mm3

Theta range for data collection 3.386 to 55.418°.
Index ranges -17<=h<=17, -21<=k<=21, -19<=l<=21
Reflections collected 40692
Independent reflections 15453 [R(int) = 0.1404]
Completeness to theta = 53.594° 98.8 % 
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7508 and 0.3279

Refinement method Full-matrix-block least-squares on F2

Data / restraints / parameters 15453 / 121 / 815

Goodness-of-fit on F2 0.854

Final R indices [I>2sigma(I)] R1 = 0.1390, wR2 = 0.3288
R indices (all data) R1 = 0.2254, wR2 = 0.4281
Extinction coefficient n/a



S14

Largest diff. peak and hole 0.568 and -0.354 e.Å-3

Table S2. Crystal data and structure refinement for compound Q4T-4F.
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Identification code Q4T-4F
Empirical formula C82 H68 F4 O4 S4
Formula weight 1321.60
Temperature 212.99 K
Wavelength 1.34139 Å
Crystal system Triclinic
Space group P-1

Unit cell dimensions a = 13.646(3) Å α= 76.530(10)°.

b = 16.361(2) Å β= 69.642(10)°.

c = 18.598(4) Å γ = 73.720(9)°.

Volume 3694.3(12) Å3

Z 2

Density (calculated) 1.188 Mg/m3

Absorption coefficient 1.080 mm-1

F(000) 1384

Crystal size 0.08 x 0.01 x 0.01 mm3

Theta range for data collection 3.505 to 55.363°.
Index ranges -16<=h<=16, -19<=k<=19, -20<=l<=22
Reflections collected 48613
Independent reflections 14016 [R(int) = 0.0933]
Completeness to theta = 53.594° 99.7 % 
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.7508 and 0.4511

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 14016 / 79 / 851

Goodness-of-fit on F2 0.891

Final R indices [I>2sigma(I)] R1 = 0.0922, wR2 = 0.2035
R indices (all data) R1 = 0.1595, wR2 = 0.2466
Extinction coefficient n/a

Largest diff. peak and hole 0.615 and -0.408 e.Å-3
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