Supporting Information

Dimethylamine Metal Halides for High-Sensitivity Fluorescence Lifetime Thermometry

Lingyu Chi,^a Jiawei Lin,^{b, c} Kunjie Liu,^a An Hou,^a Yibo Cui,^a Dong Zhao,^a Hongli Yu,^a Zhongnan Guo,^b Jing Zhao,^{*a} Quanlin Liu ^a

[a] Lingyu Chi, Kunjie Liu, An Hou, Yibo Cui, Dong Zhao, Hongli Yu, Prof. Jing Zhao, Prof. Quanlin Liu
The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering
University of Science and Technology Beijing
Beijing 100083, China

[b] Jiawei Lin, Prof. Zhongnan Guo
 Department of Chemistry, School of Chemistry and Biological Engineering
 University of Science and Technology Beijing
 Beijing, 100083, China

[c] Jiawei Lin
 Department of Chemistry
 Southern University of Science and Technology
 Shenzhen, 518055, China

*Corresponding Author:

Email: jingzhao@ustb.edu.cn

CONTENTS

1. Tables

S4 *Table S1* Crystal data and structure refinement for DMA₄InBr₇ and DMA₃SbBr₆. *Table S2* Bond lengths [Å] for DMA₄InBr₇ at 293(2) K with estimated standard deviations in **S5** parentheses. Table S3 Bond angles [°] for DMA4InBr7 at 293(2) K with estimated standard deviations in parentheses. **S6** *Table S4* Bond lengths [Å] for DMA₃SbBr₆ at 150.0 K with estimated standard deviations in **S7** parentheses. Table S5 Bond angles [°] for DMA₃SbBr₆ at 150.0 K with estimated standard deviations in **S8** parentheses. Table S6 Decomposition temperature of In-based 0D OIMHs. **S10** Table S7 Decomposition temperature of Sb-based 0D OIMHs. **S10** *Table S8* ICP results of DMA₄InBr₇:x%Sb (x = 0, 0.5, 1). **S10** Table S9 PLQY, absorption efficiency and external quantum efficiency of DMA₄InBr₇:x%Sb (x = 0, 0.5, 1). **S11** *Table S10* The *E*^b and PLQY of In- and Sb-based zero-dimensional OIMHs. **S11** Table S11 Some typical organic-inorganic metal halides for fluorescence lifetime thermometry and their relative sensitivities (S_r) . **S11 S12** *Table S12* The fluorescence lifetime of DMA₄InBr₇:1% Sb during heating-cooling cycles. 2. Figures Figure S1 The thermogravimetric analysis and differential scanning calorimetry data for powder samples of DMA₄InBr₇ and DMA₃SbBr₆. **S13** *Figure S2* The PXRD of DMA₄InBr₇:x%Sb (x = 0, 0.5, 1) after 10 days, 3 months and 9 months. **S13** Figure S3 Photographs of DMA₄InBr₇:1%Sb after immersion in ethanol for 5 hours under UV

irradiation. S13

<i>Figure S4</i> Photoluminescence quantum yield of DMA ₄ InBr ₇ :x%Sb (x=0, 0.5, 1).	S14
Figure S5 Luminescence decay curve of DMA ₄ InBr ₇ .	S14
Figure S6 a) Temperature-dependent PLE spectra; b) PL spectra and c) E_b fitting cur	rve of
DMA4InBr7; d) Temperature-dependent PLE spectra; e) PL spectra and f) Eb fitting cu	rve of
DMA ₄ InBr ₇ :0.5%Sb; g) Temperature-dependent PLE spectra; h) PL spectra and i) E _b fitting	; curve
of DMA4InBr7:1%Sb.	S15
<i>Figure S7</i> a) Temperature-dependent PL spectra of DMA ₄ InBr ₇ :1%Sb; b) DSC curv DMA ₄ InBr ₇ :1%Sb between 160 K and 280 K.	ves of S15
Figure S8 The fluorescence intensity of DMA4InBr7:1%Sb throughout repeated coolin	ig and
heating cycles in the ranges of 310 K to 320 K and 330 K to 340 K.	S16

Empirical formula	DMA ₄ InBr ₇	DMA ₃ SbBr ₆
Formula weight	858.56	739.46
Temperature	293(2) K	150.0 K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	orthorhombic	trigonal
Space group	<i>P</i> 2 ₁ 2 ₁ 2	<i>R</i> -3
Unit cell dimensions	a = 10.6364(5) Å, b = 13.3478(7) Å, c = 8.9277(5) Å,	<i>a</i> = b = 28.9960(9) Å, <i>c</i> = 8.2726(11) Å,
Volume	1267.49(11) Å ³	6023.5(8) Å ³
Ζ	2	11.999999
Density (calculated)	2.250 g/cm^3	2.4460 g/cm ³
Absorption coefficient	11.964 mm ⁻¹	13.299 mm ⁻¹
F (000)	804	4081.0448
θ range for data collection	2.979 to 26.365°	2.43 to 26.39°
	-12<=h<=13	-36<=h<=36
Index ranges	-16<= <i>k</i> <=16	-36<=k<=36
	-10<= <i>l</i> <=11	-10<= <i>l</i> <=10
Reflections collected	7667	39232
Independent reflections	2561 [$R_{int} = 0.0299$]	2749 [$R_{int} = 0.0684$]
Completeness to $\theta = 25.242^{\circ}$	99.8%	99.96%
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	2561 / 0 / 97	2749 / 0 / 103
Goodness-of-fit	1.055	1.0509
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_{obs} = 0.0200$	$R_{obs} = 0.0254$
T mat X matters $[1 > 20(1)]$	$wR_{obs} = 0.0370$	$wR_{obs} = 0.0589$
<i>R</i> indices [all data]	$R_{all} = 0.0231$	$R_{all} = 0.0373$
	$wR_{all} = 0.0375$	$wR_{all} = 0.0635$
Largest diff. peak and hole	$0.320 \text{ and } -0.382 \text{ e} \cdot \text{Å}^{-3}$	$0.6551 \text{ and } -0.7697 \text{ e} \cdot \text{Å}^{-3}$

Table S1. Crystal data and structure refinement for DMA₄InBr₇ and DMA₃SbBr₆.

 $R = \Sigma \overline{||F_o| - |F_c|| / \Sigma |F_o|}, \quad wR = \{\Sigma [w(|F_o|^2 - |F_c|^2)^2] / \Sigma [w(|F_o|^4)] \}^{1/2} \text{ and } w = 1 / [\sigma^2 (F_o^2) + (0.0104P)^2] \text{ where } P = (F_o^2 + 2F_c^2) / 3$

Label	Distances
$In(1)-Br(2)^1$	2.6898(4)
In(1)-Br(2)	2.6898(4)
$In(1)$ -Br $(1)^1$	2.6558(6)
In(1)-Br(1)	2.6558(6)
In(1)-Br(3)	2.6719(6)
In(1)-Br(3) ¹	2.6719(6)
N(1)-C(4)	1.471(7)
N(1)-C(3)	1.466(8)
N(2)-C(1)	1.462(7)
N(2)-C(2)	1.469(7)

Table S2. Bond lengths [Å] for DMA₄InBr₇ at 293(2) K with estimated standard deviations in parentheses.

¹-*x*+1, -*y*+1, *z*

Label	Angles
$Br(2)-In(1)-Br(2)^{1}$	177.68(3)
$Br(1)-In(1)-Br(2)^{1}$	89.543(17)
$Br(1)^{1}-In(1)-Br(2)$	89.542(17)
$Br(1)^{1}-In(1)-Br(2)^{1}$	88.896(17)
Br(1)-In(1)-Br(2)	88.895(17)
$Br(1)^{1}-In(1)-Br(1)$	95.16(3)
$Br(1)-In(1)-Br(3)^{1}$	88.676(15)
$Br(1)^{1}-In(1)-Br(3)^{1}$	176.15(2)
$Br(1)^{1}-In(1)-Br(3)$	88.676(15)
Br(1)-In(1)-Br(3)	176.15(2)
$Br(3)-In(1)-Br(2)^{1}$	90.913(18)
$Br(3)^{1}-In(1)-Br(2)$	90.912(18)
$Br(3)^{1}-In(1)-Br(2)^{1}$	90.760(17)
Br(3)-In(1)-Br(2)	90.761(17)
$Br(3)-In(1)-Br(3)^{1}$	87.49(3)
C(3)-N(1)-C(4)	113.9(4)
C(1)-N(2)-C(2)	114.5(5)

Table S3. Bond angles [°] for DMA₄InBr₇ at 293(2) K with estimated standard deviations in parentheses.

¹-*x*+1, -*y*+1, *z*

Label	Distances
Sb(2)-Br(4)	2.8322(5)
Sb(2)-Br(4) ¹	2.8322(5)
$Sb(2)-Br(3)^{1}$	2.7953(5)
Sb(2)-Br(3)	2.7953(5)
Sb(2)-Br(2)	2.7679(5)
$Sb(2)-Br(2)^{1}$	2.7679(5)
$Sb(1)-Br(1)^2$	2.8004(5)
$Sb(1)-Br(1)^3$	2.8004(5)
Sb(1)-Br(1)	2.8004(5)
$Sb(1)$ -Br $(1)^4$	2.8004(5)
$Sb(1)$ -Br $(1)^5$	2.8004(5)
$Sb(1)-Br(1)^{6}$	2.8004(5)
N(2)-C(4)	1.484(6)
N(2)-C(3)	1.467(6)
N(1)-C(1)	1.447(7)
N(1)-C(2)	1.477(8)

Table S4. Bond lengths [Å] for DMA_3SbBr_6 at 150.0 K with estimated standard deviations in parentheses.

¹ -*x*+1, -*y*+1, -*z*+1; ² *y*+1/3, -*x*+*y*+2/3, -*z*+2/3; ³ -*y*+1, *x*-*y*, *z*; ⁴ *x*-*y*+1/3, *x*+2/3, -*z*+2/3; ⁵ -*x*+*y*+1, - *x*+1, *z*; ⁶ -*x*+1/3, -*y*+2/3, -*z*+2/3

Label	Angles
$Br(4)^{1}-Sb(2)-Br(4)$	180.0
$Br(3)^{1}-Sb(2)-Br(4)$	90.191(14)
Br(3)-Sb(2)-Br(4)	89.809(14)
$Br(3)-Sb(2)-Br(4)^{1}$	90.191(14)
$Br(3)^{1}-Sb(2)-Br(4)^{1}$	89.809(14)
$Br(3)^{1}-Sb(2)-Br(3)$	180.0
$Br(2)-Sb(2)-Br(4)^{1}$	91.539(15)
Br(2)-Sb(2)-Br(4)	88.461(15)
$Br(2)^{1}-Sb(2)-Br(4)^{1}$	88.461(15)
$Br(2)^{1}-Sb(2)-Br(4)$	91.539(15)
$Br(2)^{1}-Sb(2)-Br(3)^{1}$	92.283(15)
$Br(2)-Sb(2)-Br(3)^{1}$	87.717(15)
Br(2)-Sb(2)-Br(3)	92.283(15)
$Br(2)^{1}-Sb(2)-Br(3)$	87.717(15)
$Br(2)^{1}-Sb(2)-Br(2)$	180.0
$Br(1)^2-Sb(1)-Br(1)^6$	92.384(14)
$Br(1)^{6}-Sb(1)-Br(1)^{5}$	87.616(14)
$Br(1)^2-Sb(1)-Br(1)^3$	180.0
$Br(1)^4$ -Sb(1)-Br(1) ⁶	92.384(16)
$Br(1)^2-Sb(1)-Br(1)$	87.616(14)
$Br(1)^{5}-Sb(1)-Br(1)^{3}$	92.384(14)
$Br(1)^{4}-Sb(1)-Br(1)$	87.616(16)
$Br(1)^4$ -Sb(1)-Br(1) ³	87.616(14)
$Br(1)^4$ -Sb(1)-Br(1) ⁵	180.0
$Br(1)^{6}-Sb(1)-Br(1)$	180.0
$Br(1)^4$ -Sb(1)-Br(1) ²	92.384(14)
$Br(1)^2-Sb(1)-Br(1)^5$	87.616(16)
$Br(1)^{3}-Sb(1)-Br(1)$	92.384(14)
$Br(1)^{6}-Sb(1)-Br(1)^{3}$	87.616(16)
$Br(1)^{5}-Sb(1)-Br(1)$	92.384(16)
C(3)-N(2)-C(4)	114.1(4)
C(2)-N(1)-C(1)	113.6(4)

Table S5. Bond angles [°] for DMA₃SbBr₆ at 150.0 K with estimated standard deviations in parentheses.

¹ -*x*+1, -*y*+1, -*z*+1; ² *y*+1/3, -*x*+*y*+2/3, -*z*+2/3; ³ -*y*+1, *x*-*y*, *z*; ⁴ *x*-*y*+1/3, *x*+2/3, -*z*+2/3; ⁵ -*x*+*y*+1, - *x*+1, *z*; ⁶ -*x*+1/3, -*y*+2/3, -*z*+2/3

Compounds	Decomposition temperature (°C)	References
(R/S-MBA) ₃ InCl ₆	200	1
(PPA) ₆ InBr ₉	200	2
BA ₆ InCl ₉	210	3
(TUH)6[In0.9573Sb0.0427Br6]Br3	215	4
PBA ₃ [InCl ₆]·H ₂ O	230	5
$[(C_2H_5)_4N]InCl_4$	243	6
Sb ³⁺ :PA ₆ InCl ₉	265	7
DMA ₄ InBr ₇	266	This work
[(C ₂ H ₅) ₄ N]InCl ₂ Br ₂	283	6
$[(C_2H_5)_4N]InBr_4$	315	6

 Table S6. Decomposition temperature of In-based 0D OIMHs.

 Table S7. Decomposition temperature of Sb-based 0D OIMHs.

Compounds	Decomposition temperature (°C)	References
[DPA] ₃ SbCl ₆	170	8
(NII) ₂ SbCl ₅	200	9
[DPA] ₃ SbCl ₆	200	10
$(C_{25}H_{22}P)SbCl_4$	285	11
DMA ₃ SbBr ₆	290	This work
$(C_{25}H_{22}P)_{2}SbCl_{5}$	293	11
(PPN) ₂ SbCl ₅	300	12

Table S8. ICP results of DMA₄InBr₇:x%Sb (x = 0, 0.5, 1).

Compound	In (mg/L)	Sb (mg/L)	Molar Doping ratio
DMA ₄ InBr ₇	74.76	0.0394	0.05%
DMA4InBr7:0.5%Sb	80.39	0.9293	1.1%
DMA4InBr7:1%Sb	70.73	2.014	2.6%

= 0, 0.5, 1).				
concentration	0%	0.5%	1%	
PLQY	50.4%	62.6%	55.1%	
Abs	11.5%	32.8%	40.7%	
EQE	5.8%	20.5%	22.4%	

Table S9. PLQY, absorption efficiency and external quantum efficiency of DMA4InBr7:x%Sb (x

Table S10 . The <i>E</i> _b and PLQY of In- and Sb-based zero-dimensional OIMHs.

Compound	E_{b} (meV)	PLQY	References
[Ph ₃ EtP] ₂ SbCl ₅	52.93	64.47%	13
Sb:PA ₆ InCl ₉	55.5	61%	7
$[MP]_2In_{0.73}Sb_{0.27}Cl_7 \cdot 6H_2O$	59.28	93.34%	14
BA ₆ InCl ₉	64	25%	3
$(C_4H_{12}N)_2InCl_5 DMF: Sb^{3+}$	68.7	99.3%	15
BA ₆ InCl ₉ : Sb	73	95%	3
DMA ₄ InBr ₇	89	50.4%	This work
5%Sb ³⁺ -doped (Gua) ₃ InCl ₆	94.4	95.72%	16
DMA4InBr7:1%Sb	106	55.1%	This work
$(C_{25}H_{22}P)_{2}SbCl_{5}$	131	98.6%	11
Cs ₂ InCl ₅ ·H ₂ O: 5%Sb	136.95	95%	17
DMA4InBr7:0.5%Sb	189	62.6%	This work
$DMA_4In_{1-x}Sb_xCl_7 (x = 1.90\%)$	659.46	97.85%	17

Table S11. Some typical organic-inorganic metal halides for fluorescence lifetime thermometry and their relative sensitivities (S_r) .

Compound	Work range (K)	$S_r (\mathbf{K}^{-1})$	References
TPP ₂ SbBr ₅	256-324	0.045	18
$(C_{10}H_{22}N)_6SbBr_9\cdot H_2O$	290-340	0.045	19
ODASn ₂ I ₆	275-350	0.014	20
$(C_4N_2H_{14}I)_4SnI_6$	313-383	0.055	21
$[C(NH_2)_3]_2SnBr_4$	173-243	0.060	21
(MePPh ₃) ₂ ZnCl ₄ : 0.30 Bi ³⁺	57-100	0.090	22
DMA4InBr7:1%Sb	300-356	0.070	This work

lifetime	310 K	320 K	330 K	340 K
$ au_l$ (µs)	1.39	1.04	0.67	0.39
$ au_2 (\mu s)$	1.37	1.05	0.60	0.34
$ au_{3}$ (µs)	1.48	0.95	0.61	0.41
$ au_4 (\mu s)$	1.43	1.03	0.65	0.40
τ_{ave} (µs)	1.42	1.02	0.63	0.39

 Table S12. The fluorescence lifetime of DMA4InBr7:1%Sb during heating-cooling cycles.

Figure S1. The thermogravimetric analysis and differential scanning calorimetry data for powder samples of DMA₄InBr₇ and DMA₃SbBr₆.

Figure S2. The PXRD of DMA₄InBr₇:x% Sb (x = 0, 0.5, 1) after 10 days, 3 months and 9 months.

Figure S3. Photographs of DMA₄InBr₇:1%Sb after immersion in ethanol for 5 hours under UV irradiation.

Figure S4. Photoluminescence quantum yield of DMA₄InBr₇:x% Sb (x = 0, 0.5, 1).

Figure S5. Luminescence decay curve of DMA₄InBr₇.

Figure S6. a) Temperature-dependent PLE spectra; b) PL spectra and c) E_b fitting curve of DMA₄InBr₇; d) Temperature-dependent PLE spectra; e) PL spectra and f) E_b fitting curve of DMA₄InBr₇:0.5%Sb; g) Temperature-dependent PLE spectra; h) PL spectra and i) E_b fitting curve of DMA₄InBr₇:1%Sb.

Figure S7. a) Temperature-dependent PL spectra of DMA4InBr7:1%Sb; b) DSC curves of DMA4InBr7:1%Sb between 160 K and 280 K.

Figure S8. The fluorescence intensity of DMA₄InBr₇:1%Sb throughout repeated cooling and heating cycles in the ranges of 310 K to 320 K and 330 K to 340 K.

References

- 1 Y. Deng, F. Li, Z. Zhou, M. Wang, Y. Zhu, J. Zhao, S. Liu and Q. Zhao, *Chin. Chem. Lett.*, 2024, **35**.
- 2 A. Hou, L. Fan, Y. Xiong, J. Lin, K. Liu, M. Chen, Z. Guo, J. Zhao and Q. Liu, *Inorg. Chem.*, 2023, **62**, 12501-12509.
- 3 Z. Tang, X. Meng, H. Zhao, S. Ji, Q. Wang, T. Bai, R. Zhang, J. Jiang, C. Katan, J. Even and F. Liu, *Adv. Opt. Mater.*, 2023, **12**, 2301282.
- 4 N. N. Golovnev, M. A. Gerasimova, I. M. Belash, A. O. Zolotov and M. S. Molokeev, *Inorg. Chem.*, 2024, **63**, 9175-9183.
- 5 H. Yu, H. Gong, Z. Hua, Y. Zhang, W. Sun, S. Gong, G. Cui, Y. Tian and H. Fu, *Sci. China Chem.*, 2023, **66**, 2576-2582.
- 6 X. Liu, W. Xu, S. Xu, X. Yu, Y. Deng, X. Wu, F. Liang and Q. Wu, *Inorg. Chem.*, 2020, **59**, 5721-5727.
- 7 F. Lin, S. Zhang, B. Zou and R. Zeng, *Inorg. Chem.*, 2024, 63, 4355-4363.
- 8 C. Sun, J.-P. Zang, Y.-Q. Liu, Q.-Q. Zhong, X.-X. Xing, J.-P. Li, C.-Y. Yue and X.-W. Lei, *CCS Chem.*, 2022, **4**, 3106-3121.
- 9 L. Lv, H. Yang, X. Cheng, Y. Lin, X. Chang, T. Cheng, Y. Xie, Y. Han, J. Li, J. Yin and B.-B. Cui, J. Mater. Chem. C, 2023, 11, 13335-13342.
- 10 J.-Q. Zhao, H.-S. Shi, L.-R. Zeng, H. Ge, Y.-H. Hou, X.-M. Wu, C.-Y. Yue and X.-W. Lei, *Chem. Eng. J.*, 2022, **431**.
- 11 H. Peng, X. He, Q. Wei, Y. Tian, W. Lin, S. Yao and B. Zou, *ACS Appl. Mater. Interfaces*, 2022, **14**, 45611-45620.
- 12 Q. He, C. Zhou, L. Xu, S. Lee, X. Lin, J. Neu, M. Worku, M. Chaaban and B. Ma, *ACS Mater*. *Lett.*, 2020, **2**, 633-638.
- 13 J. Q. Zhao, Y. Y. Ma, X. J. Zhao, Y. J. Gao, Z. Y. Xu, P. C. Xiao, C. Y. Yue and X. W. Lei, *Research*, 2023, **6**, 0094.
- 14 D. Y. Li, J. H. Song, Y. Cheng, X. M. Wu, Y. Y. Wang, C. J. Sun, C. Y. Yue and X. W. Lei, *Angew. Chem. Int. Ed. Engl.*, 2022, **61**, e202206437.
- 15 J. Nie, X. Yun, F. Cheng, B. Lan, R. Cao and J. Wang, J. Mater. Chem. C, 2024, 12, 2571-2577.
- 16 G. Zhang, C. Yang, Q. Wei, J. Long, X. Shen, Y. Chen, B. Ke, W. Liang, X. Zhong and B. Zou, *ACS Appl. Mater. Interfaces*, 2024, **16**, 3841-3852.
- 17 Y. Jing, Y. Liu, X. Jiang, M. S. Molokeev, Z. Lin and Z. Xia, *Chem. Mater.*, 2020, **32**, 5327-5334.
- 18 V. Morad, S. Yakunin, B. M. Benin, Y. Shynkarenko, M. J. Grotevent, I. Shorubalko, S. C. Boehme and M. V. Kovalenko, *Adv. Mater.*, 2021, **33**, e2007355.
- 19 K. Liu, A. Hou, J. Lin, M. Quan, Y. Xiong, Z. Guo, J. Zhao and Q. Liu, *Adv. Funct. Mater.*, 2024, **35**, 2412529.
- 20 Y. He, X. Cai, X. Wang, M. B. Liisberg, J. Dostál, M. Zhang, M. Kloz, F. Gao, T. Pullerits

and J. Chen, Adv. Opt. Mater., 2025, 13, 2402061.

- 21 S. Yakunin, B. M. Benin, Y. Shynkarenko, O. Nazarenko, M. I. Bodnarchuk, D. N. Dirin, C. Hofer, S. Cattaneo and M. V. Kovalenko, *Nat. Mater.*, 2019, **18**, 846-852.
- 22 C.-M. Shi, S.-H. Xue, J.-Y. Wang, L.-J. Xu and Z.-N. Chen, *Sci. China Chem.*, 2024, **67**, 2599-2605.