Electronic Supplementary Information (ESI)

Isomeric intramolecular charge-transfer complexes: the effect of relative positions of donor and acceptor on photophysical and mechanochromic

properties

Meng Wang,^{‡a} Xiaofan Gai,^{‡a} Jianye Li,^{b,c} Yuqing Wei,^a Yinuo Shi,^a Xiaohui Cao^d and

Guohui Yin*^{a,b}

^a School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China,

Email: <u>yingh21@hebut.edu.cn</u>.

^b Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan 056005, P. R. China.

^c College of Chemical Engineering and Materials, Handan University, Handan 056005, P. R. China.

^d School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China.

‡ These authors contributed equally to this work.

1. Experimental Section

1.1 General information

All reagents and solvents were obtained from commercial supplies and used directly without further purification unless otherwise stated. ¹H and ¹³C NMR spectra were measured on a Bruker AC 400 spectrometer using CDCl₃ as the solvent. IR spectra were recorded on a Shimadzu instrument (affinity-1S). High-resolution mass spectra (HRMS) were performed on a Bruker Daltonics micrOTOF-Q II instrument (ESI). Single-crystal diffraction data were collected using a Rigaku MM007-Saturn70 diffractometer. Density functional theory (DFT) calculations were implemented with the Gaussian 09 program package,^[S1] at the RWB97XD/6-31G (d, p) level. UV-vis spectra were carried out on a Shimadzu UV2700 spectrophotometer (solution samples) and a Hitachi UH5700 spectrophotometer (solid samples). Cyclic voltammetry was performed on a CHI660E electrochemistry workstation in CH₂Cl₂ solution containing 0.1 mol L⁻¹ tetrabutylammonium hexafluorophosphate, with Pt electrode as the working electrode and counter electrode, and saturated calomel electrode (SCE) as the reference electrode. Fluorescence emission spectra, fluorescence lifetimes (τ , non-deoxygenated solutions and solid samples) and quantum yields ($\Phi_{\rm F}$) were measured using an Edinburgh FS5 spectrophotometer. Fluorescence lifetimes (τ) of oxygen-free solution samples (bubbled with nitrogen for 15 min) were measured using a HORIBA FluoroMax-4 spectrophotometer. Powder X-ray diffraction (PXRD) data of solid states were measured with a Bruker AXS D8 Focus diffractometer using Cu-Ka1 x-ray source. Differential scanning calorimetry (DSC) was conducted on a PerkinElmer Diamond DSC with a heating rate of 10 °C·min⁻¹ under nitrogen flow.

1.2 Synthesis

Scheme S1 Synthetic routes of cis-MDF and trans-MDF

Bis(2-bromo-9H-fluoren-9-yl)methane (1)

To a solution of 2-bromo-9*H*-fluorene (4.91 g, 20.0 mmol) in DMF (100 mL) at 0 °C, potassium *tert*butoxide (0.34 g, 3.0 mmol) was added under argon atmosphere and stirred for 15 min. Then, paraformaldehyde (0.30 g, 10.0 mmol) was added and the reaction was stirred at 0 °C for 2 h. The mixture was poured into 200 mL of 5% HCl solution to quench the reaction, and a white precipitate was collected by filtration and washed with water. After drying, compound **1** was obtained as a white solid (3.08 g, 62% yield), which was used directly in the next step without further purification. ¹H NMR (400 MHz, CDCl₃, δ): 7.77(d, *J* = 8.0 Hz, 2H), 7.65 (dd, *J*₁ = 8.0 Hz, *J*₂ = 4.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.57 (s, 1H), 7.47-7.52 (m, 4H), 7.42 (t, *J* = 8.0 Hz, 2H), 7.31-7.36 (m, 2H), 4.29 (t, *J* = 8.0 Hz, 2H), 2.22-2.37 (m, 2H).

Bis(2-bromo-9-methyl-9H-fluoren-9-yl)methane (2)

To a solution of compound **1** (10.05 g, 20.0 mmol) in THF (150 mL) at 0 °C, potassium *tert*-butoxide (6.73 g, 60.0 mmol) was added and stirred for 1 h under argon atmosphere. Then, iodomethane (8.52 g, 60.0 mmol) was added and the reaction was stirred overnight. 200 mL of 5% HCl solution was poured into the reaction solution to quench the reaction. The resulting mixture was extracted with dichloromethane (3×200 mL), and the organic phase was washed with water and brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by column chromatography on silica gel (petroleum ether) to afford compound **2** as a white solid (8.33 g, 79% yield). ¹H NMR (400 MHz, CDCl₃, δ): 7.19 (d, *J* = 8.0 Hz, 1H), 7.02-7.15 (m, 7H), 6.93-6.98 (m, 3H), 6.81-6.86 (m, 2H), 6.76 (s, 1H), 2.96-3.06 (m, 2H), 1.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, δ): 151.81, 150.88, 150.22, 149.58, 138.95, 138.85, 138.66, 138.44, 130.07, 129.46, 127.65, 127.36, 127.04, 126.89, 126.43, 126.34, 123.40, 122.99, 120.41, 120.36, 120.23, 119.99, 119.40, 119.23, 49.78, 49.74, 49.08, 48.86, 29.48, 29.43.

4-(9-((2-Bromo-9-methyl-9*H*-fluoren-9-yl)methyl)-9-methyl-9*H*-fluoren-2-yl)benzaldehyde (3)

To a solution of compound **2** (5.30 g, 10.0 mmol), (4-formylphenyl)boronic acid (1.50 g, 10.0 mmol) and Pd(PPh₃)₄ (0.58 g, 0.5 mmol) in 1,2-dimethoxyethane (150 mL), Cs₂CO₃ (3.26 g, 10.0 mmol) dissolved in 10 mL H₂O was added. After being heated at reflux for 12 h under argon atmosphere, the mixture was cooled to room temperature. Then, the solvent was evaporated under vacuum and the residue was purified by column chromatography on silica gel to afford compound **3** as a white solid (2.23 g, 40% yield). ¹H NMR (400 MHz, CDCl₃, major isomer, δ): 10.08 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 1H), 6.74-7.20 (m, 13H), 3.09 (s, 2H), 1.38 (s, 3H), 1.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, two isomers, δ): 192.20, 192.12, 152.20, 151.10, 150.95, 150.60, 150.40, 149.80, 149.64, 147.59, 147.54, 140.68, 140.58, 139.03, 138.88, 138.82, 138.64,

137.39, 137.00, 134.95, 134.86, 130.32, 130.15, 129.68, 129.45, 127.87, 127.65, 127.39, 126.98, 126.85, 126.76, 126.53, 126.48, 126.42, 126.35, 126.29, 125.74, 123.46, 123.44, 123.20, 123.12, 122.92, 122.54, 120.32, 120.27, 120.12, 120.08, 119.70, 119.65, 119.57, 119.54, 119.26, 119.24, 49.90, 49.82, 49.74, 49.67, 49.21, 49.03, 29.72, 29.67, 29.63. (Ratio of the two isomers $\approx 3/1$, as determined by the integration of protons at 7.94/7.99 and 7.62/7.76 ppm)

4-(9-((2-(4-(Diphenylamino)phenyl)-9-methyl-9H-fluoren-9-yl)methyl)-9-methyl-9H-fluoren-2-

yl)benzaldehyde (cis-MDF and trans-MDF)

To a solution of compound **3** (2.50 g, 4.5 mmol), (4-(diphenylamino)phenyl)boronic acid (1.50 g, 5.0 mmol) and Pd(PPh₃)₄ (0.27 g, 0.23 mmol) in 1,2-dimethoxyethane (120 mL), Cs_2CO_3 (2.93 g, 9.0 mmol) dissolved in 4.5 mL H₂O was added. After being heated at reflux for 12 h under argon atmosphere, the mixture was cooled to room temperature. Then, the solvent was evaporated under vacuum and the residue was purified by column chromatography on silica gel to afford two light yellow solids.

cis-**MDF** (0.30 g, 9% yield). IR (KBr, cm⁻¹) \tilde{v} : 3057, 3026, 2959, 2913, 2814, 2727, 1692, 1593, 1485, 1450, 1321, 1287, 1209, 1163, 818, 762, 733, 696. ¹H NMR (400 MHz, CDCl₃, δ): 9.95 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 4H), 6.96-7.22 (m, 22H), 6.73-6.78 (m, 2H), 3.17 (s, 2H), 1.37 (s, 3H), 1.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 191.89, 151.29, 151.18, 150.57, 149.76, 147.78, 147.56, 146.79, 140.76, 139.50, 139.12, 138.99, 138.41, 137.10, 135.21, 134.74, 130.09, 129.46, 127.68, 127.59, 126.56, 126.34, 126.06, 125.92, 125.85, 125.32, 124.57, 123.62, 123.53, 123.25, 123.12, 122.68, 121.08, 119.65, 119.52, 119.38, 119.12, 49.80, 49.64, 49.53, 29.87. HRMS (ESI) *m/z*: calcd for C₅₄H₄₁NO [M]⁺ 719.3183, found 719.3182.

trans-MDF (0.85 g, 26% yield). IR (KBr, cm⁻¹) *ν*: 3030, 2955, 2914, 2855, 2826, 2733, 1692, 1593, 1485, 1454, 1325, 1283, 1211, 1167, 820, 766, 745, 696. ¹H NMR (400 MHz, CDCl₃, δ): 10.09 (s,

1H), 7.96 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.29-7.33 (m, 5H), 6.96-7.22 (m, 17H), 6.84-6.91 (m, 2H), 6.80 (t, J = 8.0 Hz, 1H), 6.73 (t, J = 8.0 Hz, 1H), 3.15 (s, 2H), 1.36 (s, 3H), 1.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ): 192.15, 150.91, 150.69, 150.62, 150.31, 147.92, 147.81, 146.82, 140.67, 139.53, 138.96, 138.86, 138.44, 137.09, 135.84, 134.86, 130.20, 129.42, 127.94, 127.68, 126.68, 126.54, 125.91, 125.77, 125.00, 124.39, 124.09, 123.36, 123.26, 123.00, 122.94, 122.31, 119.66, 119.48, 119.20, 49.91, 49.77, 49.24, 29.88, 29.80. HRMS (ESI) *m/z*: calcd for C₅₄H₄₁NO [M]⁺ 719.3183, found 719.3187.

Scheme S2 Synthetic routes of DM and AM

2-Bromo-9,9-dimethyl-9H-fluorene (4)

2-Bromo-9,9-dimethyl-9*H*-fluorene (**4**) was prepared using a literature procedure.^[S2] White solids, 90% yield. ¹H NMR (400 MHz, CDCl₃, δ): 7.69-7.71 (m, 1H), 7.58-7.60 (m, 2H), 7.42-7.48 (m, 2H), 7.34-7.36 (m, 2H), 1.49 (s, 6H).^[S2]

<u>4-(9,9-Dimethyl-9*H*-fluoren-2-yl)-*N*,*N*-diphenylaniline (**DM**)</u>

To a solution of compound **4** (4.24 g, 15.5 mmol), (4-(diphenylamino)phenyl)boronic acid (5.38 g, 18.6 mmol) and Pd(PPh₃)₄ (0.90 g, 0.78 mmol) in 1,2-dimethoxyethane (260 mL), Cs₂CO₃ (10.11 g, 31.0 mmol) dissolved in 16 mL H₂O was added. After being heated at reflux for 12 h under argon atmosphere, the mixture was cooled to room temperature. Then, the solvent was evaporated under vacuum and the residue was purified by column chromatography on silica gel to afford **DM** (4.4825

g, 66% yield) as a white solid. ¹H NMR (600 MHz, CDCl₃, δ): 7.76 (d, *J* = 6.0 Hz, 1H), 7.74 (d, *J* = 6.0 Hz, 1H), 7.63 (s, 1H), 7.54-7.56 (m, 3H), 7.45 (d, *J* = 12.0 Hz, 1H), 7.31-7.36 (m, 5H), 7.14-7.18 (m, 7H), 7.04 (t, *J* = 6.0 Hz, 2H), 1.54 (s, 6H).^[S3]

4-(9,9-Dimethyl-9*H*-fluoren-2-yl)benzaldehyde (AM)

To a solution of compound 4 (2.00 g, 7.3 mmol), (4-formylphenyl)boronic acid (1.35 g, 9.0 mmol) and Pd(PPh₃)₄ (0.43 g, 0.37 mmol) in 1,2-dimethoxyethane (260 mL), Cs₂CO₃ (4.89 g, 15.0 mmol) dissolved in 7.6 mL H₂O was added. After being heated at reflux for 12 h under argon atmosphere, the mixture was cooled to room temperature. Then, the solvent was evaporated under vacuum and the residue was purified by column chromatography on silica gel to afford **AM** (1.9761 g, 90% yield) as a white solid. ¹H NMR (600 MHz, CDCl₃, δ): 10.08 (s, 1H), 7.98 (d, *J* = 12.0 Hz, 2H), 7.82-7.84 (m, 3H), 7.77 (d, *J* = 6.0 Hz, 1H), 7.70 (s, 1H), 7.63 (d, *J* = 6.0 Hz, 1H), 7.47 (d, *J* = 6.0 Hz, 1H), 7.35-7.39 (m, 2H), 1.56 (s, 6H).^[S4]

2. Figures and Tables

Fig. S1¹H NMR of 1 in CDCl₃

Fig. S4 1 H NMR of 3 in CDCl₃

Fig. S5¹³C NMR of 3 in CDCl₃

Fig. S6¹H NMR of *cis*-MDF in CDCl₃

Fig. S7¹³C NMR of *cis*-MDF in CDCl₃

Fig. S8¹H NMR of *trans*-MDF in CDCl₃

Fig. S9 ¹³C NMR of *trans*-MDF in CDCl₃

Fig. S11 1 H NMR of DM in CDCl₃

Mass Spectrum List Report

Analysis Info

Analysis Name Method Sample Name Comment

17

18 19 683.5438

684.5490 711.5746 12298

13067 13457

D:\Data\JXX\20231012\WM.d Tune_pos_Standard.m FB-TPA-E

Acquisition Date 10/12/2023 2:42:22 PM

Operator Demo User Instrument compact

8255754.20157

Acquisition Parameter 0.3 Bar Ion Polarity Positive Set Nebulizer Source Type ESI Not active 50 m/z 1200 m/z Focus Scan Begin Set Capillary Set End Plate Offset 4000 V -500 V Set Dry Heater Set Dry Gas 200 °C 4.0 l/min Set Divert Valve Set APCI Heater Source 0 °C Scan End Set Charging Voltage 2000 V Set Corona 0 nA Intens. x10⁵ 1+ 353.2655 2.5 2.0 1+ 719.3182 1.5 1.0 0.5 293.1113 949.8083 0.0 200 400 600 800 1000 m/z +MS, 0.4min #23 FWHM S/N m/z Res I 293.1113 8152 0.0283 10359 179.4 1 353.2655 11382 5176.2 239565 0.0310 2 3 4 354.2697 355.2727 12197 10610 0.0290 0.0335 1014.9 47017 115.5 5355 5 6 360.3240 10639 148.6 6883 0.0339 381.2969 11651 4141.4 190565 0.0327 382.3009 37855 7 0.0329 11633 822.8 8 383.3044 10312 99.4 4576 0.0372 9 408.3086 12265 10826 0.0333 236.7 10 437.1934 11618 639.7 29227 0.0376 11 12 438.1979 11078 143.3 6542 0.0396 591.4986 10615 0.0557 96.7 4571 13 619.0364 12049 110.9 5288 0.0514 14 15 619.5294 621.0336 11700 10831 209.1 9965 0.0529 0.0573 109.0 5192 16 647.5594 12673 110.2 5282 0.0511

20 21 22 23 24 25 26 27 28 712.5779 13846 435.6 21149 0.0515 719.3182 12523 2525.1 122618 0.0574 720.3213 721.3273 13626 11821 1568.2 76158 15956 0.0529 328.8 0.0610 739.6050 11645 432.2 20750 0.0635 740.6119 11813 169.0 8111 0.0627 742 3083 34172 0.0515 14417 7126 11598 743.3144 356.3 17071 0.0641 767.4736 12087 124.2 5818 0.0635 29 30 795.5031 11313 117.4 5393 0.0703 949.8083 13206 108.5 4562 0.0719

504.5

213.5 1139.9 24439

10344 55327 0.0556

0.0524 0.0529

WM.d Bruker Compass DataAnalysis 4.4 printed: 10/12/2023 2:55:34 PM by: demo Page 1 of 1 Fig. S13 HRMS of *cis*-MDF

Mass Spectrum List Report

Analysis Info

Analysis Name Method Sample Name Comment

742.3077

743.3115

13695

13444

870.6

446.7

41615

21344

0.0542 0.0553

D:\Data\JXX\20230919\C52H41NO.d Tune_pos_Standard.m FB-TPA-Z

Acquisition Date 9/19/2023 9:41:09 AM

Operator Demo User Instrument compact

8255754.20157

C52H41NO.d					
Bruker Compass DataAnalysis 4.4	printed:	9/19/2023 10:30:14 AM	by:	demo	Page 1 of 1

Fig. S14 HRMS of trans-MDF

Empirical formula	C ₅₄ H ₄₁ NO	
Formula weight	719.88	
Temperature	113.15 K	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 16.6138(4) Å	$\alpha = 90$ deg.
	B = 20.4490(3) Å	$\beta = 105.048(2) \text{ deg}$
	C = 11.6823(3) Å	$\gamma = 90$ deg.
Volume	3832.79(15) Å ³	
Z	4	
Calculated density	1.248 g/cm^3	
μ	0.073 mm ⁻¹	
F(000)	1520.0	
Crystal size	0.26 x 0.22 x 0.20 1	mm ³

MoK α ($\lambda = 0.71073$)

3.226 to 56.564 deg.

37187

1.046

9479 / 0 / 507

 $-22 \le h \le 22, -27 \le k \le 27, -12 \le l \le 15$

9479 [$R_{int} = 0.0507$, $R_{sigma} = 0.0443$]

$$\begin{split} R_1 &= 0.0506, \, \mathrm{wR}_2 = 0.1097 \\ R_1 &= 0.0683, \, \mathrm{wR}_2 = 0.1214 \end{split}$$

0.26 and -0.22 eÅ⁻³

Radiation

Index ranges

 2θ range for data collection

Reflections collected

Independent reflections

Goodness-of-fit on F²

Data / restraints / parameters

Final R indices $[1 > = 2\sigma(1)]$

Final R indices [all data]

Largest diff. peak and hole

Empirical formula	C54H41NO			
Formula weight	719.88			
Temperature	113.15 K			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	$a = 9.91390(10) \text{ Å} \alpha = 92.6830(10)$			
	deg.			
	B = 17.2889(2) Å β = 90.8740(10)			
	deg.			
	$C = 22.2185(2) \text{ Å} \qquad \gamma = 90.5800(10)$			
	deg.			
Volume	3803.42(7) Å ³			
Z 4				
Calculated density	1 density 1.257 g/cm^3			
μ	0.564 mm ⁻¹			
F(000)	1520.0			
Crystal size	0.28 x 0.25 x 0.19 mm ³			
Radiation	$CuK\alpha (\lambda = 1.54184)$			
2θ range for data collection	7.968 to 177.508 deg.			
Index ranges	$-12 \le h \le 12, -16 \le k \le 22, -26 \le l \le 28$			
Reflections collected	54694			
Independent reflections	15831 [$R_{int} = 0.0612, R_{sigma} = 0.0461$]			
Data / restraints / parameters	15831 / 0 / 1014			
Goodness-of-fit on F ²	1.044			
Final R indices $[1 > = 2\sigma(1)]$	$R_1 = 0.0444, wR_2 = 0.1044$			
Final R indices [all data]	$R_1 = 0.0589, wR_2 = 0.1110$			
Largest diff. peak and hole	0.30 and -0.22 eÅ ⁻³			

 Table S2 Crystal data and structure refinements for trans-MDF

Fig. S15 The short contacts between molecules for *cis*-MDF

Contact (number)		Distance (Å)
O…H (2)	O1…H9	2.611
	H15…C48	2.810
	H45…C28	2.899
II. (10)	H45…C29	2.666
$\operatorname{H}^{}\pi(12)$	H47…C39	2.819
	H50…C46	2.853
	H50…C47	2.898
	H16…H47	2.370
н…н (4)	H21c…H34	2.353

Table S3 The short contacts between molecules for *cis*-MDF

Fig. S16 The short contacts between molecules for (a) isomer-1 and (b) isomer-2 of *trans-MDF*

Contact (number)		Distance (Å)
O…H (2)	O2…H02r / O1…H88	2.604 / 2.591
	H01k…C100	2.871
	H01z…C67	2.857
	H01u…C42 (2)	2.890
	H02a…C99	2.796
	H02a…C100	2.818
	H02gC92	2.783
II = (15)	H02m…C93	2.824
$\Pi^{\dots}\pi(13)$	H02s…C74	2.735
	H02v…C107	2.778
	H014…C108	2.853
	H57…C20	2.691
	Н99…С39	2.577
	H102…C38	2.699
	H108…C45	2.650
-- (2)	C39····C99	3.372
n···n (2)	C42…C42	3.204
H…C (2)	H02j…C36 (2)	2.889
	H01b…H86	2.238
	H01v…H101	2.253
Н…Н (4)	H021…H76b	2.240
	H02z…H95	2.268

Table S4 The short contacts between molecules for isomer-1 of trans-MDF

Contact (number)		Distance (Å)
O…H (2)	O2…H02r / O1…H88	2.604 / 2.591
	H01k…C100	2.871
	H01z…C67	2.857
	H02a…C99	2.796
	H02a…C100	2.818
	H02g…C92	2.783
	H02m…C93	2.824
H…π (13)	H02s…C74	2.735
	H02v…C107	2.778
	H014…C108	2.853
	H57…C20	2.691
	Н99…С39	2.577
	H102…C38	2.699
	H108…C45	2.650
$\pi \cdots \pi (1)$	C39…C99	3.372
H…C (2)	H70…C90 (2)	2.882
	H01b…H86	2.238
	H01v…H101	2.253
Н…Н (6)	H021…H76b	2.240
	H02z…H95	2.268
	H81…H107 (2)	2.323

Table S5 The short contacts between molecules for isomer-2 of *trans*-MDF

Fig. S17 The optimized molecular geometries of (a) *cis*-MDF and (b) *trans*-MDF

Fig. S18 UV absorption and fluorescence spectra of (a, c) DM (λ_{exc}: 346 nm) and (b, d) AM (λ_{exc}: 328 nm) in different solvents. (e) Normalized UV absorption spectra of *cis*-MDF, *trans*-MDF, DM, AM and DM/AM in THF (inset: un-normalized ones). (f) Fluorescence spectra of DM/AM in THF (λ_{exc}: 333 nm, inset: normalized fluorescence spectra of DM/AM and DM). (10 µM)

	Solvent	λ_{abs}	λ _{em}	$\Delta\lambda^a$	τ_1	τ_2	A_1/A_2	χ^2	$\Phi_{\rm F}$
		(nm)	(nm)	(nm)	(ns)	(ns)		~~~~~	(%)
	~		387		0.46	2.64	98.00/2.00	1.13	
	Cyclohexane	334	405	173	0.47	4.05	98.02/1.98	1.26	4.8
			507		10.19	-	100/0	1.17	
•	Toluene	338	398	195	0.33	3.80	94.90/5.10	1.26	3.3
<i>Cl</i> S-			533		11.99	-	100/0	1.24	
NIDF	THF	335	406	220	-	-	-	-	2.1
			555		12.78	-	100/0	1.14	
	DCM	337	596	259	6.93	-	100/0	1.08	0.3
	MeCN	333	614	281	-	-	-	-	-
			391		0.10	1.72	97.80/2.20	1.24	
	Cyclohexane	339	403	~ 81	0.09	1.70	97.22/2.78	1.20	1.4
			~ 420		0.12	2.54	95.10/4.90	1.24	
trans-	Toluene	343	447	104	1.20	2.54	30.15/69.85	1.23	18.1
MDF	THF	340	540	200	3.99	13.50	65.13/34.87	1.17	6.2
	DCM	343	619	276	1.41	7.91	74.91/25.09	1.09	0.8
	MeCN	339	-	-	-	-	-	-	-
	Cyclohexane	344	386	60	0.92	-	100/0	1.15	55 5
	Cyclonexalic	577	404	00	0.92	-	100/0	1.21	55.5
	Toluene	e 349	397	65	1.00	-	100/0	1.04	79.7
DM			414	05	1.00	-	100/0	1.02	17.1
	THF	346	414	68	1.40	-	100/0	1.17	72.3
	DCM	347	425	78	1.67	-	100/0	1.29	81.1
	MeCN	344	438	94	2.07	-	100/0	1.27	79.4
	Cyclohexane	325	-	-	-	-	-	-	-
AM	Toluene	329	-	-	-	-	-	-	-
	THF	328	-	-	-	-	-	-	-
	DCM	328	424	96	0.10	1.70	92.66/7.34	1.30	1.3
	MeCN	325	434	109	0.10	2.19	89.55/10.45	1.24	1.9

Table S6 Photophysical data of cis-MDF, trans-MDF, DM and AM in different solvents

^a Stokes shift calculated based on ICT emission.

Fig. S19 Cyclic voltammetry curves of (a) cis-MDF and (b) trans-MDF

Fig. S20 UV absorption spectra of (a) cis-MDF and (b) trans-MDF in different solvents (10 µM)

Fig. S21 Schematic representation of the proposed mechanism for the polarity-dependent (a) downhill and (b) up-down type emission of *cis*-MDF and *trans*-MDF, respectively (LE states are not shown for clarity)

Fig. S22 Time-resolved fluorescence decay curves of (a, c) *cis*-MDF and (b, d) *trans*-MDF in deoxygenated toluene

Fig. S23 Photographs of (a) *cis*-MDF and (b) *trans*-MDF in different solid states taken under daylight and 365 nm UV illumination, respectively

	$\lambda_{ m pristine}$ / nm $(arPsi_{ m F})$	$\lambda_{ m gound}$ / nm $(arPsi_{ m F})$	$\lambda_{ ext{fumed}} / \operatorname{nm} \ (arPsi)$	$\Delta\lambda^a$ / nm
cis-MDF	478 (0.130)	513 (0.105)	480 (0.117)	35
trans-MDF	472 (0.282)	481 (0.136)	472 (0.218)	9

Table S7 Photophysical data of cis-MDF and trans-MDF in different solid states

^a Grinding-induced spectral shift, $\Delta \lambda = \lambda_{gound} - \lambda_{pristine}$.

Fig. S24 The stacking molecules of (a) *cis*-MDF and (b) *trans*-MDF in one-unit cell. Dashed red and green lines illustrate the intramolecular and intermolecular N…C=O distances (Å), respectively

Fig. S25 Normalized absorption spectra of pristine cis-MDF and trans-MDF

Fig. S26 Time-resolved fluorescence decay curves of pristine (a) cis-MDF and (b) trans-MDF

Fig. S27 DSC curves of (a) cis-MDF and (b) trans-MDF in different solid states

3. References

[S1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, G. Cheeseman, J. R. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,

G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz and J. Cioslowski, *Gaussian 09, revision B.01*, Gaussian, Inc., Wallington, CT, 2010.

- [S2] C.-S. Li, Y.-H. Tsai, W.-C. Lee and W.-J. Kuo, J. Org. Chem., 2010, 75, 4004-4013.
- [S3] Z.-P. Wu, G.-J. Liu, C.-C. Zhu, Z.-M. Li, X.-C. Gao and Q.-Y. Cao, Can. J. Chem., 2013, 91, 1043-1047.
- [S4] J. Xu, Q. Zong, S. Peng, J. Liao, H. Zhao, H. Kong and J. Xu, *ChemistrySelect*, 2020, 5, 9330-9335.