Supplementary Information for

Simultaneously enhanced piezoelectric properties and thermal stability of Pb(Zr, Ti)O₃-based ceramics by composition design strategy

Mingwang Yuan,^a Junhui Lang,^a Yingzhi Meng,^a Silin Tang,^b Niyu Jiang,^a Liming Quan,^a Dongyan Yu,^{*c} Biao Zhang,^a Wangxin Li,^a Qingqing Ke,^b Pengrong Ren,^{*d}

Laijun Liu*ª

^a Guangxi Key Lab of Optical and Electronic Functional Materials and Devices; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources; College of Materials Science and Engineering; Guilin University of Technology, Guilin, 541004, China

^b School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China

^c Guangxi Key Laboratory of Special Engineering Equipment and Control, Guilin University of Aerospace Technology, Guilin Guangxi 541004

^d Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China

x	Space group	Lattice parameters				Cell volume	Phase content	Tetragonality
		a (Å)	<i>b</i> (Å)	c (Å)	Angle (°)	(Å ³)	(%)	(c/a)
0	P4mm	4.0506	4.0506	4.1213	$\alpha = \beta = \gamma = 90$	67.618	13.34	1.017
	<i>R</i> 3m	4.0737	4.0737	4.0737	$\alpha = \beta = \gamma = 89.707$	67.602	86.66	
0.005	P4mm	4.0487	4.0487	4.1208	$\alpha = \beta = \gamma = 90$	67.550	70.13	1.018
	<i>R</i> 3m	4.0736	4.0736	4.0736	$\alpha = \beta = \gamma$ $= 89.713$	67.596	29.97	
0.01	P4mm	4.0475	4.0475	4.1206	$\alpha = \beta = \gamma = 90$	67.504	53.24	1.018
	<i>R</i> 3m	4.0735	4.0735	4.0735	$\alpha = \beta = \gamma = 89.715$	67.594	46.76	
0.015	P4mm	4.0466	4.0466	4.1199	$\alpha = \beta = \gamma = 90$	67.465	60.91	1.018
	<i>R</i> 3m	4.0730	4.0730	4.0730	$\alpha = \beta = \gamma = 89.719$	67.564	39.09	
0.02	P4mm	4.0465	4.0465	4.1209	$\alpha = \beta = \gamma = 90$	67.468	66.35	1.018
	<i>R</i> 3m	4.0725	4.0725	4.0725	$\alpha = \beta = \gamma = 89.7357$	67.522	33.65	
0.025	P4mm	4.0451	4.0451	4.1215	$\alpha = \beta = \gamma = 90$	67.443	77.09	1.019
	<i>R</i> 3m	4.0719	4.0719	4.0719	$\alpha = \beta = \gamma = 89.769$	67.514	22.91	

 Table S1 Lattice parameters obtained from the Rietveld structural refinements.

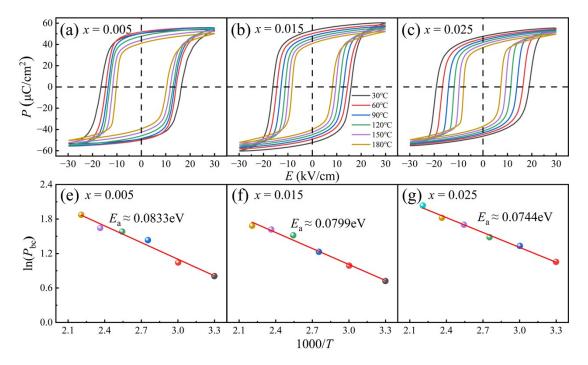


Fig.S1 (a)-(c) The *P*-*E* loops dependence of Nd_2O_3 content for the PNZTN-*x* ceramics; (d)-(f) Plot of $ln(P_{bc})$ versus 1000/T.

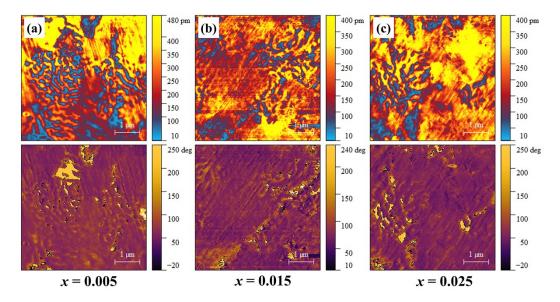


Fig.S2 PFM measurements for the PNZTN-x ceramics with (a) x = 0.005, (b) x = 0.015, (c) x = 0.025.