Broad-band Emissive Phenanthroimidazole-based Donor-Acceptor

Luminogens for Hybrid White Light Emitting Diodes and Sensors for

Picric Acid Detection

Swetha Maredi[⊥], Sandhya Rani Nayak[⊥], Md Intekhab Alam, Diksha Thakur, and Sivakumar

Vaidyanathan*

Department of Chemistry, Indian Institute of Technology, Hyderabad

Kandi, Sangareddy-502285, Telangana, India.

^{*} To whom correspondence should be addressed. Email: <u>vsiva@chy.iith.ac.in</u> (Sivakumar Vaidyanathan), [⊥]authors contributed equally.

Contents:

Fig SI (1-14). NMR (¹H, ¹³C) spectra of fluorophores.

Fig SI (15-18). Mass spectra of fluorophores.

Fig SI (19-21). NMR (¹H) spectra of fluorophores with PA in equivalent in CDCl₃.

Fig SI 22. Emission spectra upon gradual addition of PA and Stern-volmer Plot.

Fig SI (23-26) Crystal packing of the fluorophores

Fig SI 27 quantum yield of the fluorophores

Fig. S28: Electron transfer process between fluorophores (PhBr, PhPh, PhNp, and PhAn) and PA.

Table ST1: Single crystal data of PhBr, PhPh, PhNp and PhAn

Table ST2: The Comparison of our luminophores with other reported PA sensors.

Table ST3: Melting points of the fluorophores

Fig. S29: TGA and DSC of PhBr, PhPh, PhNp, and PhAn

Fig SI30. Plot of singlet and triplet levels calculated by TD-DFT with SOC values of PhBr, PhPh, PhNp, PhAn

Fig SI31. Fluorescence lifetime of PhBr, PHPh, PhNp, PhAn at 77 K

Table ST 4: CRI, LER, CCT, x, y coordinates and R9 values of fluorophores

Table ST5 and Table ST6: Computed Vertical Transitions and Their OscillatorStrengths and Configurations of fluorophores.

 Table ST7 and Table ST8: Computed Vertical Transitions and Their Oscillator

 Strengths and Configurations of fluorophores with picric acid.

Table ST9 and Table ST10: Computed Vertical Transitions and Their OscillatorStrengths and Configurations of crystals of fluorophores.

Experimental section

Materials:

All the reaction carried out under nitrogen atmosphere. Commercially available reagents (sigma aldrich) were used as purchased without any further purification. All the reaction were monitored by thin-layer chromatography (TLC) with silica gel 60 F_{254} Aluminium plates (Merck). Column chromatography was carried out using silica gel (Sigma-Aldrich).

General information for Measurements:

¹H NMR and ¹³C NMR spectra were measured using an AV 400 Avance-III 400 MHz FT-NMR spectrometer (Bruker Biospin International, Switzerland) with tetramethylsilane (TMS) as the internal standard reference. The absorption and photoluminescence (PL) excitation and emission spectra of the synthesized luminophores were measured using a SHIMADZU UV-2450 spectrophotometer and a HORIBAFLUOROMAX – 4P spectrophotometer, respectively. The absolute fluorescence quantum yield was measured with Edinburgh Spectrofluorometer, FS5 with Integrating Sphere SC-30. The electrochemical properties of the fluorophores were measured by using Cyclic voltammetry (CV) experiments were performed in dimethyl formamide (DMF) solution containing 0.1 M tert-butyl ammonium perchlorate(Bu₄NClO₄) using as the supporting electrolyte, and the scan rate was continued at 100 mV s⁻¹ using an AUTOLAB 302N Modular potentiostat at room temperature. The working (glass-carbon rod), auxiliary (counter, Pt wire) and reference (Ag/AgCl wire) electrode were used for CV analysis. The CIE color chromaticity coordinates of the fluorophores were calculated from the emission spectral values by using MATLAB software.

Scheme 1. Synthetic Scheme of the synthesized fluorophores

Synthesis of 9,9-diethyl-9H-fluorene (Intermediate I):

To a mechanically stirred mixture of 9H-fluorene (2.5 g, 10.199 mmol) were dissolved in DMSO (20 mL) in 60 °C after that portion of powdered KOH (2.48 g, 44.36 mmol), KI (0.169 g, 1.019 mmol) were added then drop wise over 45 minutes Bromoethane (1.076 mL, 10 mmol) was added in room temperature, the reaction mixture was left over night with stirring. The reaction mass poured into water and the precipitate obtained was extracted from ethyl acetate. The organic extract was washed with brine solution and water and then concentrated

with rotavapour. The compound was purified on silica gel column chromatography using hexane/ethyl acetate mixture in 9/1 as eluent. Yield: 90% ¹H NMR (400 MHz, CDCl₃) δ 8.38 – 8.06 (m, 2H), 7.83 (dd, J = 8.0, 4.7 Hz,2H), 7.58 – 7.24 (m, 4H), 2.24 – 2.07 (m, 4H), 0.36 – 0.27 (m, 6H).¹³C NMR (101 MHz, CDCl₃) δ 151.51 (s), 151.19 (s), 148.07 (s), 147.14 (s), 139.14 (s), 129.30 (s), 127.49 (s), 123.36 (s), 123.28 (s) 121.19 (s), 119.76 (s), 118.33 (s), 77.36 (s), 77.04 (s), 76.72 (s), 56.72 (s), 8.40 (s).

Synthesis of 9,9-diethyl-2-nitro-9H-fluorene (Intermediate II):

To a mechanically stirred mixture of Intermediate I (2.0 g, 8.99 mmol) were dissolved in glacial acetic acid (20 ml) after mixing, drop wise HNO₃ (2.26 ml, 53.95 mmol), was added in room temperature, the reaction mixture was left over 28 hours at 70 °C with stirring. After completion of reaction neutralise the reaction mixture with NaOH. The reaction mass poured into water and the precipitate obtained was extracted from ethyl acetate. The organic extract was washed with brine solution and water and then concentrated with rotavapour. The compound was purified on silica gel column chromatography using hexane/ethyl acetate mixture. Yield: 85 %. Yellow colour solid was obtained. ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.75 (m, 2H), 7.67 – 7.38 (m, 5H), 2.21 (q, J = 7.3 Hz, 4H), 0.81 – 0.17 (m, 6H). ¹³C NMR (101 MHz, CDCl3) δ 150.01 (s), 141.71 (s), 127.29 (d, J = 17.6 Hz), 126.99 (s), 124.27 (s), 123.05 (s), 120.15 (s), 119.83 (s), 77.56 (s), 77.24 (s), 76.92 (s), 56.21 (s), 32.93 (s), 8.70 (s).

Synthesis of 9,9-diethyl-9H-fluoren-2-amine (Intermediate III):

To a mechanically stirred mixture of Intermediate II (200 mg, 0.749 mmol) were dissolved in ethanol (15 ml) and hydrazine (0.5 ml, 10 mmol) then by keeping reaction mixture in ice bath and add carefully portion wise 10 % palladium/carbon (50 mg, 0.469 mmol), the reaction mixture was left over for reflux for 8 hours with stirring. After completion of reaction neutralise the reaction mixture with NaOH. The reaction mass poured into water and the precipitate obtained was extracted from ethyl acetate. The organic extract was washed with brine solution

and water and then concentrated with rotavapour. The compound was purified on silica gel column chromatography using hexane/ethyl acetate mixture. Yield: 70 %. brown colour solid was obtained. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.08 (m, 2H), 7.79 – 7.66 (m, 2H), 7.45 – 7.28 (m, 3H), 2.11 – 1.92 (m, 4H), 0.27 – 0.15 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 151.52 (s), 151.21 (s), 148.06 (s), 147.16 (s), 139.14 (s), 129.30 (s), 127.49 (s), 123.32 (d, J = 7.2 Hz), 121.19 (s), 119.76 (s), 118.33 (s), 77.37 (s), 77.05 (s), 76.74 (s), 56.72 (s), 32.51 (s), 8.41 (s).

Synthesis of 2-(4-bromophenyl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1H-phenanthro[9,10d]imidazole (PhBr)

A mixture of 9,10-phenanthrenequinone (0.8 g, 3.84 mmol), 4-bromobenzaldehyde (1.38 g, 4.22 mmol), Intermediate III (0.687 g, 4.608 mmol) and ammonium acetate (1.183 g, 15.36 mmol) were added in acetic acid (30 mL), and the reaction mixture was heated to reflux for 12 hours under nitrogen atmosphere. After cooling to room temperature, the mixture was poured into ice water and extracted with CH₂Cl₂ three times the reaction mixture was added to the ice water and the product was extracted with CH₂Cl₂ three times. The extracted organic phase was dried over Na₂SO₄ and solvent was removed under reduced pressure. The raw product was purified by column chromatography using ethyl acetate/petroleum ether as eluent to yield a white powder (90%). ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, J = 7.9 Hz, 1H), 8.80 (d, J = 8.3Hz, 1H), 8.74 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.85 (dd, J = 5.8, 2.8 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.69 (t, J = 7.0 Hz, 1H), 7.53 (dd, J = 20.6, 8.0 Hz, 4H), 7.49 - 7.37 (m, 10.10 Hz)7H), 7.21 (t, J = 7.6 Hz, 1H), 2.17 – 1.95 (m, 4H), 0.47 (t, J = 7.3 Hz, 3H), 0.33 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.19 (s), 143.40 (s), 140.08 (s), 131.38 (s), 130.82 (s), 128.32 (s), 127.61 (s), 127.36 (s), 126.19 (s), 125.72 (s), 123.64 (s), 123.08 (s), 122.73 (s), 121.07 (s), 56.71 (s), 32.99 (s), 8.31 (d, J = 17.9 Hz). HRMS (m/z, ESI, [M+H]⁺, (m/z, ESI, [M+3]+): calcd. for C₃₈H₂₉BrN₂, 594.5622, 596.5781 found 594.1610, 596.1593.

Synthesis of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-phenyl-1H-phenanthro[9,10-d]imidazole (PhPh)

¹**H NMR (400 MHz, CDCl₃) \delta** 8.93 (d, *J* = 7.9 Hz, 1H), 8.80 (d, *J* = 8.4 Hz, 1H), 8.74 (d, *J* = 8.3 Hz, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.86 – 7.82 (m, 1H), 7.78 (t, *J* = 7.4 Hz, 1H), 7.68 (dd, *J* = 9.5, 3.6 Hz, 3H), 7.52 (dd, *J* = 11.3, 4.2 Hz, 2H), 7.48 – 7.38 (m, 5H), 7.29 – 7.17 (m, 4H), 2.16 – 1.95 (m, 4H), 0.47 (t, *J* = 7.3 Hz, 3H), 0.30 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃) \delta** 128.82 (s), 128.23 (d, *J* = 10.1 Hz), 127.72 (s), 127.30 (s), 126.13 (s), 125.58 (s), 124.91 (s), 124.12 (s), 123.78 (s), 123.10 (d, *J* = 9.6 Hz), 122.81 (s), 121.07 (d, *J* = 5.0 Hz), 120.34 (s), 56.68 (s), 33.19 – 33.06 (m), 32.88 (d, *J* = 22.3 Hz), 8.42 (s), 8.22 (s). **HRMS (m/z, ESI, [M+H]⁺):** calcd. for C₃₈H₃₀N₂, 515.2487, found 515.2486.

Synthesis of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-(naphthalen-1-yl)-1H-phenanthro[9,10d]imidazole (PhNp)

¹**H** NMR (400 MHz, CDCl₃) δ 8.94 (d, J = 7.7 Hz, 1H), 8.85 (d, J = 8.3 Hz, 1H), 8.79 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 7.1 Hz, 1H), 7.79 (dd, J = 14.5, 7.8 Hz, 3H), 7.67 (ddd, J = 18.8, 15.5, 7.5 Hz, 3H), 7.59 – 7.45 (m, 5H), 7.39 – 7.29 (m, 5H), 7.28 – 7.21 (m, 2H), 1.94 (dddd, J = 46.3, 28.2, 14.0, 6.8 Hz, 4H), 0.40 (t, J = 7.2 Hz, 3H), 0.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.10 (s), 150.80 (s), 150.05 (s), 142.48 (s), 140.17 (s), 137.33 (s), 136.58 (s), 133.28 (d, J = 19.7 Hz), 129.77 (s), 129.51 (s), 129.27 (s), 128.23 (d, J = 18.9 Hz), 127.93 (s), 127.42 (d, J = 5.6 Hz), 127.07 (d, J = 7.8 Hz), 126.75 (s), 126.36 – 125.82 (m), 125.60 (s), 125.05 (s), 124.45 (s), 124.15 (s), 123.14 (d, J = 9.3 Hz), 122.89 (s), 121.23 (s), 120.36 (s), 120.10 (s), 56.38 (s), 32.61 (s), 7.87 (s). HRMS (m/z, ESI, [M+H]⁺): calcd. for C₄₂H₃₂N₂, 565.2644, found 565.2640.

Synthesis of 2-(anthracen-9-yl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1H-phenanthro[9,10d]imidazole (PhAn) ¹**H** NMR (400 MHz, CDCl₃) δ 8.97 (d, *J* = 7.7 Hz, 1H), 8.88 (d, *J* = 8.4 Hz, 1H), 8.83 (d, *J* = 8.2 Hz, 1H), 7.99 – 7.89 (m, 2H), 7.86 – 7.70 (m, 4H), 7.61 – 7.35 (m, 9H), 7.28 – 7.15 (m, 6H), 1.97 – 1.63 (m, 4H), 0.33 (t, *J* = 7.3 Hz, 3H), -0.68 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 149.91 (s), 142.32 (s), 140.06 (s), 132.37 (d, *J* = 17.2 Hz), 130.85 (s), 129.14 (s), 128.43 (s), 127.74 (s), 126.92 (s), 126.60 – 125.88 (m), 125.24 (d, *J* = 10.8 Hz), 124.14 (s), 123.18 (s), 122.75 (s), 122.49 (s), 121.27 (s), 119.91 (s), 56.20 (s), 32.63 (s), 7.58 (s). HRMS (m/z, ESI, [M+H]⁺): calcd. for C₄₆H₃₄N₂, 615.2800, found 615.2797.

SI1. NMR (¹H, ¹³C) spectra of fluorophores.

Fig. S1 ¹H NMR spectra of 9,9-diethyl-9H-fluorene (Intermediate I) in CDCl₃.

Fig. S2 ¹³C NMR spectra of 9,9-diethyl-9H-fluorene (Intermediate I) in CDCl₃.

Fig. S3 ¹H NMR spectra of 9,9-diethyl-2-nitro-9H-fluorene (Intermediate II) in CDCl₃.

Fig. S4 ¹³C NMR spectra of 9,9-diethyl-2-nitro-9H-fluorene (Intermediate II) in CDCl₃.

Fig. S5 ¹H NMR spectra of 9,9-diethyl-9H-fluoren-2-amine (Intermediate III) in CDCl₃.

Fig. S6 ¹³C NMR spectra of 9,9-diethyl-9H-fluoren-2-amine (Intermediate III) in CDCl₃.

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 88

 88
 <

Fig. S7 ¹H NMR spectra of 2-(4-bromophenyl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1Hphenanthro[9,10-d]imidazole (PhBr) in CDCl₃.

Fig. S9 ¹H NMR spectra of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-phenyl-1H-phenanthro[9,10d]imidazole (PhPh) in CDCl₃.

Fig. S10 ¹³C NMR spectra of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-phenyl-1H-phenanthro[9,10-d]imidazole (PhPh) in CDCl₃.

Fig. S11 ¹H NMR spectra of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-(naphthalen-1-yl)-1Hphenanthro[9,10-d]imidazole in (PhNp) CDCl₃.

-151.10 -150.80 -150.80 -150.80 -120.80 -127.93 -127.9

Fig. S12 ¹³C NMR spectra of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-(naphthalen-1-yl)-1H-phenanthro[9,10-d]imidazole (PhNp) in CDCl₃.

Fig. S13 ¹H NMR spectra of 2-(anthracen-9-yl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1Hphenanthro[9,10-d]imidazole (PhAn) in CDCl₃.

Fig. S14 ¹³C NMR spectra of 2-(anthracen-9-yl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1Hphenanthro[9,10-d]imidazole (PhAn) in CDCl₃.

SI2. Mass spectra of fluorophores.

Fig. S15 Mass spectra of 2-(4-bromophenyl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1Hphenanthro[9,10-d]imidazole (PhBr).

Fig. S16 Mass spectra of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-phenyl-1H-phenanthro[9,10d]imidazole (PhPh).

Fig. S17 Mass spectra of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-(naphthalen-1-yl)-1H-phenanthro[9,10-d]imidazole (PhNp).

Fig. S18 Mass spectra of 2-(anthracen-9-yl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1H-phenanthro[9,10-d]imidazole (PhAn).

SI3. NMR (¹H) spectra of fluorophores with PA in equivalent in CDCl₃.

Fig. S19 ¹H NMR spectrum of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-phenyl-1H-phenanthro[9,10-d]imidazole (PhPh) with PA (0, 0.5, 1.0 equiv) in CDCl₃.

Fig. S20 ¹H NMR spectrum of 1-(9,9-diethyl-9H-fluoren-2-yl)-2-(naphthalen-1-yl)-1H-phenanthro[9,10-d]imidazole (PhNp) with PA (0, 0.5, 1.0 equiv) in CDCl₃.

Fig. S21 ¹H NMR spectrum of 2-(anthracen-9-yl)-1-(9,9-diethyl-9H-fluoren-2-yl)-1Hphenanthro[9,10-d]imidazole (PhAn) with PA (0, 0.5, 1.0 equiv) in CDCl₃.

Fig. S22 (a) and (c) Change in the fluorescence of PhNp and PhAn upon the addition of PA excited at 355 nm and 360 nm in THF solvent (1x10⁻⁵ M). (b) and (d) Stern– Volmer plots of PhNp and PhAn using PA as a quencher.

Name	PhBr	PhPh	PhNp	PhAn
CCDC No.	2304012	2304798	2304013	2304812
Empirical Formula	C38 H29 Br N2	C42 H33 N2	C38 H30 N2	C46 H34 N2
Formula weight	593.54	565.7	514.64	614.75
(g/mol)				
Crystal System	monoclinic	orthorhombic	monoclinic	orthorhombic
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Space group	P 1 21/c 1 (14)	P 21 21 21	P 1 21/c 1 (14)	P b c a (61)
		(19)		
Cell Length (Å)	a=12.521(10)	a=12.798(3)	a=12.8246(6)	a=9.0799(6)
	b=24.47(2)	b=13.832(3)	b=11.3473(7)	b=19.2446(12)
	c=9.614(9)	c=17.083(3)	c=18.9588(10)	c=39.209(3)
Cell Angle (°)	β=94.93(3)	$\alpha = \beta = \gamma = 90$	β=95.767(2)	$\alpha = \beta = \gamma = 90$
Cell Volume (Å ³)	2934.73(400)	3024.07(100)	2745.01(30)	6851.34(80)

Table ST1: Single crystal data of PhBr, PhPh, PhNp and PhAn.

Fig. S23: (a) PhBr crystal packing view from (b) x-axis, (c) y-axis and z-axis respectively.

Fig. S24: (a) PhPh crystal packing view from (b) x-axis, (c) y-axis and z-axis respectively.

Fig. S25: (a) PhNp crystal packing view from (b) x-axis, (c) y-axis and z-axis respectively.

Fig. S26: (a) PhAn crystal packing view from (b) x-axis, (c) y-axis and z-axis respectively.

Fig. S27: Quantum Yield of respective fluorophores PhBr, PhPh, PhNp, and PhAn.

Fig. S28: Electron transfer process between fluorophores (PhBr, PhPh, PhNp, and PhAn) and PA.

S.	Fluorophores	Solvent	Quenching	Detection	Ref.
No			constant	limit (M)	
			(M ⁻¹)		
1	Hexaphenylsilole	THF/Water	-	4.81 ppb	1
	$ \sim \gamma / \epsilon$				
2	Tetraphenylethene	Water	2.7 x 10 ⁵	0.4 ppm	2
	$\sim \gamma \gamma \gamma$				
	•				
3	Polymers based on di	H2O/THF	4.70×10^{4}	1.81 ×	3
	(naphthalen-2-yl)-	(9/1)		10-6	
	1,2-diphenylethene				

4	Triazine-COF	THF	8.71×10^{4}	10.7 ppm	4
5	poly(silylenevinylene)	THF	8.491x10 ³	1.0 ppm	5
6	Diphenylfumaronitriles	H2O/THF	5.60×10^{4}	1.80 ×	6
		(8/2)		10-10	
7	Imidazole derivatives	H2O/DMF	1.30×10^{4}	3.55 ×	7
		(9/1)		10-6	
	amine derivatives		1.02 104	10-6	
9	3-(Benzyloxy)-2-(4- (di-p-tolylamino)phenyl)- 4H-chromen-4-one	Water	1.93 × 10 ⁴	3.70 × 10 ⁻⁹	9
10	[P(dimethylacrylamide <i>co</i> - Benzophenone acrylamide- <i>co</i> -glycidyl methacrylate]	Water	7.75×10^{4}	5.60 × 10 ⁻⁷	10

11	9,14-diphenylpyreno [4,5-g]isoquinoline	MeCN	-	2.42 ×	11
	\sim			10-6	
12	7 10-bis(4-bromonhenyl)-	EtOH	5.60×10^{5}	2.6 nnh	12
12	8,9-bis(4-(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)-	Lien	0.000 10	2 .0 ppc	12
	phenyl)-fluoranthene				
	R				
	R Br				
	\sim γ \sim				
	$ _{Br} \stackrel{I}{\longrightarrow} \stackrel{I}{\rightarrow} \stackrel{I} \stackrel{I}{\rightarrow} \stackrel{I}{\rightarrow} \stackrel{I}{\rightarrow} \stackrel{I}{\rightarrow} $				
13	Fluorescein derivatives	EtOH	2.50×10^{5}	1 10 ×	13
	N.	Lion	2.50 10	10-7	15
	ert				
	ни 🏷 о				
	N N				
	но. 2о				
14	1,3-Bis(benzo[d]thiazol-	H2O/THF	1.54×10^{5}	29.1 ppb	14
	2-yl)benzene derivatives	(9/1)			
	s s				
	N=				
	│				
	N= √				
15	1,3,5-tri(1H- benzo[d]imidazol-2- yl)benzene	THF	1.15x10 ⁵	50 ppb	15
	derivative				

	$C_{12}H_{25}$				
16	tetraphenylethylene	THF	5.7x10 ⁴	1.45 ppb	16
17	Terthiophene	THF/water	5.7x10 ³	70 ppb	17
	H ₂ C-N H ₂ C-N H				
18	AC-2	THF	2.5 x 10 ³	450 ppb	18
19	PhBr	THF	9.09 x 10 ⁻²	3.72ppb	This
	N N N Br				work
20	PhPh	THF	2.49 x 10 ⁻²	5.15ppb	This work

TGA and DSC:

The stability of compounds of all the fluorophores was evaluated by using Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) and the temperature ranged from 25 °C to 800 °C and 25 °C to 500 °C respectively under a scanning rate of 10 °C/min in N₂ atmosphere. DSC thermograms have indicated endothermic peaks corresponding to melting points 270.36 °C, 237.09 °C, 243.49 °C, and 335.49 °C for PhBr, PhPh, PhNp, and PhAn respectively. The glass transition (Tg) temperatures were identified as 370.65 °C, 383.58 °C, 403.07 °C, and 404.10 °C for PhBr, PhPh, PhNp, and PhAn respectively.

Fluorophores	Melting Point (°C)	5 % wt loss by TGA
	by DSC	(T _g (°C))
PhBr	270.36	216
PhPh	237.09	325
PhNp	243.49	211
PhAn	335.49	171

Table ST3: Melting points of the fluorophores

Fig. S29: TGA and DSC of PhBr, PhPh, PhNp, and PhAn

Table ST 4: CRI, LER, CCT, x, y coordinates and R9 values of fluorophores

Fluorophore	PhAn : Eu -1 : Eu -2	CRI	LER (lm W ⁻¹)	CCT (K)	(x, y)	R9
PhAn + Eu-1	1:1	90	236	8354	(0.29, 0.29)	57
PhAn + Eu-2	1:1	90	243	7613	(0.30, 0.30)	49
PhAn + Eu-1	1:2	84	233	7470	(0.30, 0.28)	64
PhAn + Eu-2	1:2	85	225	8628	(0.29, 0.27)	39

Fig SI30. Plot of singlet and triplet levels calculated by TD-DFT with SOC values of PhBr, PhPh, PhNp, PhAn

Fig SI31. Fluorescence lifetime of PhBr, PHPh, PhNp, PhAn at 77 K

Table ST5: Computed Vertical Transitions and Their Oscillator Strengths and Configurations

PhBr

Excited State	1: Tripl	et-A 2	6825 eV	462.20 nm	f=0.0000	<s**2>=2.00</s**2>	0
150 ->158	-0.1027	2					
152 ->156	-0.1364	.9					
152 ->157	-0.1295	6					
153 ->154	0.2577	9					
153 ->155	0.5306	2					
153 ->157	-0.1339	9					
153 ->158	0.1729	3					

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -4146.73944784Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Triplet-A	2.9945 eV	414.03 nm	f=0.0000	<s**2>=2.000</s**2>
146 ->156		0.10797				
148 ->160		-0.13106				
151 ->154		0.60602				
151 ->155		-0.15539				
Excited State	3:	Triplet-A	3.0828 eV	402.18 nm	f=0.0000	<s**2>=2.000</s**2>
149 ->155		-0.12515				
150 ->155		-0.14401				
150 ->162		0.12429				
152 ->155		-0.12315				
152 ->156		-0.26236				
152 ->157		-0.23236				
153 ->155		-0.26960				
153 ->157		-0.12453				
153 ->158		0.38850				
Excited State	4:	Singlet-A	3.3914 eV	365.59 nm	f=0.0189	<S**2>=0.000
153 ->154		0.69765				
Excited State	5:	Singlet-A	3.6568 eV	339.05 nm	f=0.4806	<s**2>=0.000</s**2>
152 ->158		0.10281				
153 ->155		0.64320				
153 ->156		0.16715				
153 ->157		0.13846				
Excited State	6:	Singlet-A	3.8071 eV	325.66 nm	f=0.0754	<s**2>=0.000</s**2>
152 ->155		0.16688				
152 ->158		0.11167				
153 ->155		-0.23436				
153 ->156		0.59863				
153 ->157		0.16638				
PhPh						
Excited State	1:	Triplet-A	2.7255 eV	454.90 nm	f=0.0000	<s**2>=2.000</s**2>
133 ->141		0.10330				

Excited State	1:	I ripiet-A	2.7255	ev	454.90 nm	I=0.0000	<5***2	>=2.000
133 ->141		0.10330						
135 ->138		-0.12131						
135 ->139		-0.16445						
135 ->140		-0.13586						
136 ->137		0.21628						
136 ->138		0.52087						

.17619

136 ->141 0.17322

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1575.63415551 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 129 ->139 130 ->142 134 ->137 135 ->137 136 ->137	2: Triplet-A 0.11342 -0.14006 0.61332 -0.10659 -0.10485	2.9916 eV 4	14.44 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 131 ->138 132 ->143 133 ->138 133 ->144 135 ->138 135 ->139 135 ->140 136 ->140 136 ->140 136 ->141	3: Triplet-A -0.14663 -0.12050 0.13064 -0.11940 -0.14433 -0.26260 -0.20379 -0.30680 -0.11463 0.37053	3.1438 eV 3	94.38 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 136 ->137	4: Singlet-A 0.70202	3.3761 eV 3	67.24 nm	f=0.0129	<s**2>=0.000</s**2>
Excited State 135 ->138 135 ->140 135 ->141 136 ->138 136 ->139 136 ->140	5: Singlet-A 0.12624 -0.10485 0.13310 0.51645 0.36612 0.19578	3.7166 eV 3	33.60 nm	f=0.2178	<s**2>=0.000</s**2>
Excited State 135 ->138 136 ->138 136 ->139	6: Singlet-A 0.11514 -0.42503 0.54027	3.8368 eV 3	23.15 nm	f=0.1732	<s**2>=0.000</s**2>

PhNp

Excited State	1:	Triplet-A	2.6487 eV	468.10 nm	f=0.0000	<s**2>=2.0</s**2>	00
144 ->155		0.15305					
147 ->150		0.54250					
147 ->151		0.24569					
149 ->150		0.27048					

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -1729.27799684Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 145 ->157 147 ->150 148 ->152 149 ->150 149 ->151 149 ->152 149 ->153	2: Triplet-A 0.13079 -0.11414 -0.32061 0.18128 -0.14439 0.12010 0.47611	2.8463 eV 435.60 nm f=0.0000 <s**2>=2.000</s**2>
149 ->154	-0.11108	
Excited State 142 ->154 143 ->156 146 ->150 146 ->151 148 ->151	3: Triplet-A 0.13374 -0.14448 -0.27182 0.52736 -0.16120	2.9942 eV 414.08 nm f=0.0000 <s**2>=2.000</s**2>
Excited State 149 ->150	4: Singlet-A 0.70201	3.4765 eV 356.63 nm f=0.0696 <s**2>=0.000</s**2>
Excited State 149 ->151	5: Singlet-A 0.70073	3.5729 eV 347.01 nm f=0.0240 <s**2>=0.000</s**2>
Excited State 148 ->150 148 ->153 149 ->152	6: Singlet-A 0.14649 0.23185 0.61950	3.8372 eV 323.11 nm f=0.0200 <s**2>=0.000</s**2>

PhAn

Excited State	1:	Triplet-A	1.7684 eV	701.10 nm	f=0.0000	<s**2>=2.000</s**2>
161 ->163		0.68309				
162 ->163		0.14134				
161 <-163		0.13424				
This state for optimization and/or second-order correction.						
$T \neq 1T$	Г/Л		E) 100 0	05055020		

Total Energy, E(TD-HF/TD-DFT) = -1882.95055232

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Triplet-A	2	.8752 eV	431.23 nm	f=0.0000	<s**2>=2.00</s**2>)()
158 ->171		0.12990						
160 ->165		-0.34942						

162 ->163	-0.12209	
162 ->165	0.17679	
162 ->166	0.47518	
162 ->167	-0.15328	
Excited State	3: Triplet-A	2.9267 eV 423.63 nm f=0.0000 <s**2>=2.000</s**2>
161 ->163	-0.13930	
162 ->163	0.67893	
Excited State 162 ->163	4: Singlet-A 0.69905	2.9310 eV 423.01 nm f=0.0016 <s**2>=0.000</s**2>
Excited State 161 ->163	5: Singlet-A 0.69338	3.2009 eV 387.34 nm f=0.1150 <s**2>=0.000</s**2>
Excited State 160 ->163	6: Singlet-A 0.70197	3.5568 eV 348.58 nm f=0.0002 <s**2>=0.000</s**2>

Optimized Cartesian coordinates and energies of luminophores:

Table ST6: Optimized Cartesian coordinates:

PhBr

70

symmetry c1

At Typ	omic Co e X	ordinates (Angs Y	troms) Z
С	3.193715000	-4.006837000	-0.561278000
С	2.553557000	-2.781437000	-0.532414000
С	3.273175000	-1.580861000	-0.328782000
С	4.695105000	-1.641076000	-0.132864000
С	5.306066000	-2.913702000	-0.173128000
С	4.582613000	-4.074077000	-0.384355000
С	2.678445000	-0.270593000	-0.283421000
С	5.482798000	-0.425477000	0.112553000
С	4.836817000	0.840349000	0.181689000

С	3.416073000	0.877368000	-0.016191000
С	5.575242000	2.014450000	0.430105000
Η	5.039501000	2.956770000	0.472682000
С	6.944515000	1.955442000	0.608015000
С	7.600895000	0.714595000	0.538731000
С	6.884946000	-0.445401000	0.296789000
Η	2.616329000	-4.913020000	-0.718814000
Η	1.481106000	-2.746383000	-0.663134000
Η	6.376613000	-2.996190000	-0.029229000
Η	5.092546000	-5.032494000	-0.406711000
Η	7.511222000	2.862254000	0.797812000
Η	8.677105000	0.661347000	0.674785000
Η	7.427636000	-1.382176000	0.248979000
С	0.199066000	-0.628275000	-0.669217000
С	-0.647825000	-0.939389000	0.402249000
С	-0.080529000	-1.078943000	-1.964902000
С	-1.777955000	-1.717185000	0.169357000
Η	-0.406540000	-0.556331000	1.387263000
С	-1.221857000	-1.842772000	-2.205471000
Η	0.597143000	-0.821392000	-2.772368000
С	-2.865100000	-2.165237000	1.153132000
С	-2.070677000	-2.153031000	-1.139827000
Η	-1.445645000	-2.180473000	-3.212963000
С	-3.811788000	-2.920168000	0.211442000
С	-3.330118000	-2.900947000	-1.113301000
С	-4.981055000	-3.618294000	0.505936000
С	-4.022479000	-3.540787000	-2.143131000

С	-5.677786000	-4.257997000	-0.525634000
Η	-5.354539000	-3.681857000	1.522696000
С	-5.205705000	-4.215509000	-1.840923000
Η	-3.646601000	-3.521917000	-3.162282000
Η	-6.593074000	-4.797092000	-0.299644000
Η	-5.757846000	-4.718228000	-2.629353000
N	1.363038000	0.176862000	-0.435487000
С	-3.515917000	-0.891687000	1.778337000
Η	-2.722765000	-0.319195000	2.272963000
Η	-3.868366000	-0.260057000	0.954807000
С	-4.661610000	-1.106795000	2.772136000
Η	-5.529215000	-1.574174000	2.299188000
Η	-4.363010000	-1.726286000	3.623788000
Η	-4.989757000	-0.141633000	3.171001000
С	-2.334127000	-3.164255000	2.228193000
Η	-1.878961000	-4.009776000	1.699433000
Η	-3.203387000	-3.576140000	2.753673000
С	-1.341595000	-2.624381000	3.262925000
Η	-1.100050000	-3.408908000	3.987214000
Η	-0.400514000	-2.310624000	2.803607000
Η	-1.745528000	-1.776441000	3.824951000
С	0.236564000	2.472111000	-0.263588000
С	0.355406000	3.670962000	0.465233000
С	-0.943172000	2.253193000	-0.994604000
С	-0.668672000	4.610646000	0.480669000
Η	1.271225000	3.852547000	1.015633000
С	-1.975791000	3.189890000	-0.984275000

Η	-1.063682000	1.360867000	-1.594444000
С	-1.833745000	4.359096000	-0.242948000
Н	-0.566478000	5.527297000	1.050188000
Н	-2.879384000	3.013049000	-1.556300000
С	1.391075000	1.557624000	-0.235510000
N	2.614830000	1.986222000	0.016143000
Br	-3.252903000	5.640326000	-0.221439000

PhPh

70

symmetry c1

A Ty	tomic Coo pe X	ordinates (Angs Y	troms) Z
С	-5.158956880	0.336261200	0.015267290
С	-3.803038490	0.285808710	-0.028544030
С	-3.068420010	1.474597710	-0.040031560
С	-3.728335900	2.712157000	0.000066600
С	-5.126573190	2.739756080	0.041979940
С	-5.826814100	1.574888570	0.049240750
С	-1.676414320	1.481575030	-0.090961140
С	-2.977970090	3.914448890	0.000056960
С	-1.576317100	3.865355920	-0.040050740
С	-0.971008680	2.611828390	-0.090970200
С	-0.831162500	5.047569380	-0.028582230
Η	0.237874610	5.010415510	-0.054644710
С	-1.472206180	6.243447260	0.015219910
С	-2.878307700	6.299204730	0.049202860

С	-3.617076980	5.158383150	0.041960540
Η	-5.724174180	-0.572230110	0.023808510
Η	-3.299982120	-0.658201580	-0.054599250
Η	-5.643635090	3.676148220	0.068752510
Η	-6.896046060	1.599621060	0.081354680
Η	-0.904421320	7.150336260	0.023746570
Η	-3.370291320	7.248847440	0.081309370
Η	-4.685423890	5.211465440	0.068740190
С	-0.591967150	-0.715293280	-0.277266230
С	0.708075860	-1.231059250	-0.387624060
С	-1.702727980	-1.544081380	-0.404295150
С	0.867002780	-2.582759530	-0.626212100
Η	1.577809870	-0.567283450	-0.285312700
С	-1.552676520	-2.916646310	-0.646499530
Η	-2.714030770	-1.120695590	-0.314282420
С	2.130003420	-3.383672990	-0.785942040
С	-0.272996970	-3.434411920	-0.757123110
Η	-2.434403690	-3.565114620	-0.745890780
С	1.625831490	-4.780860580	-1.022128840
С	0.197043520	-4.795968310	-1.002382300
С	2.335938540	-5.946586550	-1.236850980
С	-0.495374710	-5.979227140	-1.198128010
С	1.626122790	-7.140550150	-1.434172150
Η	3.434673690	-5.946162410	-1.253932870
С	0.234646730	-7.156136580	-1.415030480
Η	-1.594125440	-5.998951480	-1.184443230
Н	2.181296020	-8.074536940	-1.606002840
Η	-0.303789950	-8.102514530	-1.571711760
---	--------------	--------------	--------------
N	-0.730217790	0.359416710	-0.087620200
С	3.001025120	-3.311403850	0.482008430
Η	3.397835520	-2.323189410	0.586285610
Н	2.404819150	-3.548541600	1.338281820
С	4.159027020	-4.320123670	0.367483670
Η	3.849084630	-5.265237490	0.761939730
Η	4.431664020	-4.434909390	-0.660812640
Η	5.000917840	-3.961087580	0.921751600
С	2.962404410	-2.881217080	-1.980197730
Η	2.315320640	-2.689682710	-2.810557400
Η	3.681115840	-3.625702490	-2.252402370
С	3.691714800	-1.582925390	-1.587584660
Η	4.746433270	-1.715405160	-1.709724170
Η	3.357795340	-0.782694020	-2.214503760
Η	3.477644210	-1.348617540	-0.565736520
С	0.891559820	0.849823700	1.610276610
С	2.254931020	0.565327640	1.684456970
С	0.142645080	0.985670800	2.779844400
С	2.870279850	0.417723610	2.927851640
Η	2.845440210	0.458580510	0.762965940
С	0.757816900	0.837619680	4.022897700
Η	-0.932322040	1.209929000	2.721105330
С	2.121816230	0.554012630	4.096943440
Η	3.945284110	0.193864490	2.986124880
Η	0.167854960	0.944615760	4.944836410
Н	2.606610640	0.437533310	5.077012800

С	0.406594350	0.966801390	0.630265780
N	0.452755220	2.254864020	-0.087635400

PhNp

76

A Ty	tomic Co pe X	c Coordinates (Angs X Y	
С	2.308689000	-4.055004000	-1.091459000
С	1.897557000	-2.766094000	-0.805123000
С	2.824997000	-1.764957000	-0.435050000
С	4.217780000	-2.100403000	-0.335655000
С	4.592130000	-3.427726000	-0.641484000
С	3.668448000	-4.387877000	-1.014682000
С	2.471070000	-0.405809000	-0.118879000
С	5.211956000	-1.104452000	0.085057000
С	4.798265000	0.212930000	0.430633000
С	3.402849000	0.525969000	0.322741000
С	5.736525000	1.174863000	0.856111000
Η	5.373994000	2.165484000	1.109364000
С	7.078243000	0.854553000	0.939222000
С	7.506618000	-0.439334000	0.595197000
С	6.593475000	-1.392965000	0.178959000
Η	1.575325000	-4.805308000	-1.371956000
Η	0.845045000	-2.524133000	-0.859741000
Η	5.634442000	-3.716284000	-0.577253000
Η	3.999209000	-5.397422000	-1.239704000
Н	7.798990000	1.598544000	1.265765000

Η	8.560237000	-0.696283000	0.654770000
Η	6.962745000	-2.378655000	-0.079174000
С	-0.056733000	-0.211618000	-0.433480000
С	-0.981319000	-0.426996000	0.596951000
С	-0.404234000	-0.442786000	-1.769550000
С	-2.255015000	-0.889369000	0.281780000
Η	-0.684271000	-0.218036000	1.617823000
С	-1.682322000	-0.896114000	-2.090450000
Н	0.331092000	-0.266427000	-2.547164000
С	-3.442247000	-1.166027000	1.211848000
С	-2.606626000	-1.109393000	-1.065551000
Η	-1.952485000	-1.063551000	-3.128759000
С	-4.512688000	-1.583717000	0.195345000
С	-4.004934000	-1.543340000	-1.119286000
С	-5.818502000	-2.017554000	0.413593000
С	-4.799877000	-1.897954000	-2.210792000
С	-6.617555000	-2.371149000	-0.679906000
Η	-6.222479000	-2.095270000	1.417748000
С	-6.114362000	-2.306825000	-1.982548000
Η	-4.403548000	-1.863832000	-3.221771000
Η	-7.637930000	-2.703465000	-0.512657000
Η	-6.746844000	-2.585722000	-2.820155000
N	1.251964000	0.277833000	-0.109211000
С	-3.798159000	0.158828000	1.956607000
Η	-2.906005000	0.487044000	2.502404000
Η	-3.978786000	0.927631000	1.196730000
С	-4.984475000	0.120711000	2.925111000

Η	-5.924704000	-0.092465000	2.409802000
Η	-4.853456000	-0.625150000	3.715662000
Η	-5.095080000	1.094902000	3.412402000
С	-3.189231000	-2.359481000	2.184303000
Н	-2.929338000	-3.233697000	1.576147000
Η	-4.144445000	-2.604353000	2.663076000
С	-2.126919000	-2.170056000	3.272092000
Η	-2.097532000	-3.053473000	3.918099000
Η	-1.125956000	-2.046848000	2.850282000
Η	-2.335149000	-1.306441000	3.911676000
С	1.530968000	1.563786000	0.352624000
N	2.808296000	1.730949000	0.617075000
С	0.489618000	2.600181000	0.560701000
С	-0.153317000	3.255763000	-0.538583000
С	0.173241000	2.962769000	1.857208000
С	0.188444000	3.000645000	-1.894263000
С	-1.160904000	4.238351000	-0.261792000
С	-0.812059000	3.940021000	2.124087000
Η	0.693449000	2.482262000	2.679832000
С	-0.448862000	3.658115000	-2.922125000
Η	0.979515000	2.291048000	-2.111490000
С	-1.806923000	4.889630000	-1.347198000
С	-1.474689000	4.553383000	1.086811000
Η	-1.043611000	4.198669000	3.152919000
С	-1.464088000	4.605416000	-2.648551000
Η	-0.167258000	3.454781000	-3.951113000
Η	-2.574303000	5.627423000	-1.127837000

Η	-2.239421000	5.300029000	1.284308000
Η	-1.962269000	5.114068000	-3.468535000

PhAn

82

С	-1.883826000	-4.342945000	1.196670000
С	-1.597849000	-3.012605000	0.949923000
С	-2.600355000	-2.118704000	0.508614000
С	-3.939790000	-2.598141000	0.318331000
С	-4.185033000	-3.964117000	0.581948000
С	-3.188035000	-4.823120000	1.009819000
С	-2.376064000	-0.725443000	0.231252000
С	-5.011625000	-1.698931000	-0.130379000
С	-4.732995000	-0.325352000	-0.382478000
С	-3.386838000	0.130690000	-0.188616000
С	-5.751480000	0.549818000	-0.810622000
Η	-5.491550000	1.587680000	-0.990240000
С	-7.040754000	0.087042000	-0.993577000
С	-7.334790000	-1.265847000	-0.750507000
С	-6.342479000	-2.134543000	-0.329439000
Η	-1.097184000	-5.010463000	1.535831000
Η	-0.589598000	-2.650230000	1.100533000
Η	-5.183744000	-4.362730000	0.449389000
Η	-3.419894000	-5.866550000	1.201497000
Η	-7.823197000	0.764181000	-1.323569000
Η	-8.345995000	-1.635837000	-0.892821000
Н	-6.608329000	-3.170238000	-0.152623000

С	0.103442000	-0.296453000	0.660676000
С	0.970814000	-0.788798000	-0.323737000
С	0.527563000	-0.146140000	1.984688000
С	2.265711000	-1.149515000	0.032486000
Η	0.614794000	-0.864787000	-1.344333000
С	1.832256000	-0.485529000	2.341194000
Η	-0.163982000	0.246923000	2.721901000
С	3.401833000	-1.674593000	-0.852471000
С	2.697663000	-0.982075000	1.364622000
Η	2.165408000	-0.352508000	3.366104000
С	4.535130000	-1.793271000	0.174680000
С	4.103653000	-1.385401000	1.453502000
С	5.833047000	-2.271738000	0.008625000
С	4.965903000	-1.420507000	2.550922000
С	6.699257000	-2.305817000	1.107593000
Η	6.179718000	-2.627408000	-0.956202000
С	6.271221000	-1.878546000	2.367954000
Η	4.628177000	-1.103740000	3.533733000
Η	7.713432000	-2.672656000	0.979222000
Η	6.955374000	-1.912133000	3.210696000
N	-1.235087000	0.075122000	0.296320000
С	3.694246000	-0.609055000	-1.955656000
Η	2.765788000	-0.434898000	-2.511320000
Η	3.916115000	0.337773000	-1.450411000
С	4.815415000	-0.922560000	-2.951272000
Η	5.789258000	-0.996134000	-2.459995000
Η	4.638781000	-1.854800000	-3.497281000

Η	4.885636000	-0.119804000	-3.692451000
С	3.110851000	-3.090609000	-1.438206000
Η	2.903592000	-3.762045000	-0.596747000
Η	4.039261000	-3.459013000	-1.889825000
С	1.980253000	-3.209313000	-2.465586000
Η	1.932238000	-4.234871000	-2.845799000
Η	1.004417000	-2.982858000	-2.027884000
Η	2.128819000	-2.549860000	-3.326693000
С	-1.632023000	1.353079000	-0.087371000
N	-2.913442000	1.409261000	-0.380760000
С	-0.678970000	2.491875000	-0.146523000
С	-0.520166000	3.328014000	0.979953000
С	0.056500000	2.726202000	-1.328655000
С	-1.281868000	3.156484000	2.179767000
С	0.443381000	4.403042000	0.934162000
С	1.019212000	3.802198000	-1.363041000
С	-0.116241000	1.939372000	-2.511837000
С	-1.094058000	3.978160000	3.260031000
Η	-2.036138000	2.377564000	2.211459000
С	0.609840000	5.233926000	2.086048000
С	1.190875000	4.604297000	-0.230435000
С	1.773622000	4.019367000	-2.558341000
Η	-0.868914000	1.158127000	-2.513140000
С	0.623053000	2.184797000	-3.639542000
С	-0.132308000	5.028355000	3.217510000
Η	-1.689335000	3.836016000	4.157207000
Н	1.340151000	6.037496000	2.040577000

Η	1.921424000	5.409578000	-0.258040000
С	1.586982000	3.233763000	-3.663595000
Н	2.498176000	4.829329000	-2.570261000
Н	0.466299000	1.583425000	-4.530283000
Н	0.002068000	5.667964000	4.084701000
Н	2.163589000	3.411973000	-4.566345000

Table ST7: Computed Vertical Transitions and Their Oscillator Strengths and Configurations

PICRIC ACID

PhBr + PA

Excited State 1: Triplet-A 2.5401 eV 488.11 nm f=0.0000 <S**2>=2.000 211 -> 212 0.68551
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) = -5067.72536279
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	Triplet-A	2.8326 eV	437.70 nm	f=0.0000	<s**2>=2.000</s**2>
196 -> 212		-0.20715				
196 -> 214		0.16363				
196 -> 216		-0.35348				
196 -> 226		-0.11001				
197 -> 212		0.12234				
197 -> 214		-0.12714				
197 -> 216		0.26602				
198 -> 216		0.12677				
207 -> 212		0.19185				
207 -> 216		0.18828				
211 -> 216		0.14170				
Excited State	3:	Triplet-A	2.8878 eV	429.33 nm	f=0.0000	<s**2>=2.000</s**2>
191 -> 212		-0.16173				
196 -> 216		0.16486				
197 -> 212		-0.12217				
201 -> 212		-0.10017				
206 -> 212		0.20733				
207 -> 212		0.13591				
211 -> 214		0.28925				
211 -> 216		0.42400				
Exercised State	4.	Circalat A	2 1000 -V	280.70	£_0 1020	< <u></u>
Exclued State $211 > 212$	4:	Singlet-A	5.1608 eV	389./9 nm	1-0.1020	< <u>5</u> ·· <u>2</u> >=0.000
211 -> 212		0.09499				
Excited State	5:	Singlet-A	3.5113 eV	353.10 nm	f=0.0044	<s**2>=0.000</s**2>

207 -> 212	0.19099
210 -> 212	0.67372

Excited State 6: Singlet-A 3.5555 eV 348.71 nm f=0.0066 <S**2>=0.000 201 -> 212 -0.14115 201 -> 216 0.12108 207 -> 212 0.60652 210 -> 212 -0.20476

PhPh+ PA

Excited State 1: Triplet-A 2.6659 eV 465.08 nm f=0.0000 <S**2>=2.000 193 -> 195 -0.13307 194 -> 195 0.64833 194 -> 196 -0.15877 This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -2496.61994852Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Triplet-A	2.8379 eV 436	.88 nm f=0.0000	<s**2>=2.000</s**2>
176 -> 199	0.10698			
178 -> 199	-0.17528			
179 -> 195	-0.28006			
179 -> 196	0.11227			
179 -> 198	0.11923			
179 -> 199	0.36403			
180 -> 195	0.12325			
180 -> 199	-0.18012			
190 -> 195	0.20396			
190 -> 199	-0.16525			
Excited State	3: Triplet-A	2.8454 eV 435	.74 nm f=0.0000	<s**2>=2.000</s**2>
192 -> 200	-0.20527			
192 -> 201	-0.16321			
192 -> 202	-0.11974			
193 -> 195	0.18973			
193 -> 196	0.40530			
193 -> 197	-0.10101			
193 -> 200	-0.25804			
193 -> 201	0.18475			
194 -> 196	0.13126			
Excited State	4: Singlet-A	3.3003 eV 375	6.67 nm f=0.0993	<s**2>=0.000</s**2>
193 -> 195	-0.11293			
194 -> 195	0.67956			
F 1 G	- - - - - - - - - -	a 5001 XX 050		
Excited State	5: Singlet-A	3.5331 eV 350	1.92 nm t=0.0269	<5**2>=0.000
190 -> 195	-0.15307			
193 -> 195	0.65373			

194 -> 195	0.12713
194 -> 196	0.10623

Excited State 6: Singlet-A 3.5558 eV 348.69 nm f=0.0047 <S**2>=0.000 193 -> 195 -0.13504 194 -> 196 0.66160 194 -> 197 -0.16841

PhNp+ PA

Excited State 207 -> 208	1: Triplet-A 0.68571	2.6037 eV 476.19 nm f=0.0000 <s**2>=2.000</s**2>
This state for	optimization and/o	r second-order correction.
Total Energy,	E(TD-HF/TD-DF	Γ) = -2650.26442603
Copying the e	xcited state density	y for this state as the 1-particle RhoCI density.
Excited State	2: Triplet-A	2.6805 eV 462.54 nm f=0.0000 <s**2>=2.000</s**2>
200 -> 217	0.14814	
203 -> 209	0.14908	
204 -> 209	-0.13794	
205 -> 209	0.53790	
205 -> 211	-0.31990	
Excited State	3. Triplet Λ	2.8244 eV $438.97 nm$ f=0.0000 < S**2>=2.000
100 -> 212	0.1/603	2.0244 CV 450.97 IIII 1-0.0000 <5 22-2.000
190 -> 212 192 -> 208	-0.18/77	
192 -> 200 192 -> 210	-0.10477	
$192 \rightarrow 210$ $192 \rightarrow 212$	-0.30239	
$192 \Rightarrow 212$ 193 -> 208	-0.17683	
193 -> 200	-0.10374	
193 = 210 193 = 212	-0.10374	
193 > 212 194 -> 208	-0 11973	
194 > 200 194 -> 212	-0.21065	
$202 \rightarrow 208$	0 17445	
202 -> 212	0.20546	
202 - 212	0.20540	
Excited State	4: Singlet-A	3.2646 eV 379.78 nm f=0.1116 <s**2>=0.000</s**2>
207 -> 208	0.69469	
Excited State	5: Singlet-A	3.5685 eV $347.44 nm$ f=0.0060 <s**2>=0.000</s**2>
193 -> 208	0.10498	
196 -> 208	-0.17593	
196 -> 212	0.14493	
202 -> 208	0.61096	
205 -> 208	0.14774	
Excited State	6: Singlet-A	3.5868 eV 345.67 nm f=0.0011 <s**2>=0.000</s**2>
206 -> 208	0.70300	
200 200	0.70200	

PhAn+ PA

1.7725 eV 699.48 nm f=0.0000 <S**2>=2.000 Excited State 1: Triplet-A 0.69535 220 -> 221220 <- 221 0.13299 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -2803.93438907Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Triplet-A 2.6045 eV 476.05 nm f=0.0000 <S**2>=2.000 0.68284 219 -> 222 2.8239 eV 439.06 nm f=0.0000 <S**2>=2.000 Excited State 3: Triplet-A 202 -> 225 0.13440 204 -> 222 -0.17321 204 -> 225 -0.25144 204 -> 226 0.13878 205 -> 222 -0.15502 205 -> 225 -0.23880205 -> 226 0.13178 206 -> 222 -0.15982206 -> 225 -0.24889206 -> 226 0.13739 215 -> 222 0.17420 215 -> 225 0.18204 215 -> 226 -0.10015Excited State 4: 3.1595 eV 392.41 nm f=0.0861 <S**2>=0.000 Singlet-A 219 -> 221 -0.23248220 -> 221 0.65913 3.1897 eV 388.71 nm f=0.0167 <S**2>=0.000 Excited State 5: Singlet-A 219 -> 221 0.66720 220 -> 2210.22878 3.2088 eV 386.39 nm f=0.0181 <S**2>=0.000 Excited State 6: Singlet-A 219 -> 222 -0.17544 220 -> 222 0.67977

Optimized Cartesian coordinates and energies of luminophores:

Table ST8: Optimized Cartesian coordinates:

PhBr + PA

89

С	0.377502000	5.049899000	0.023053000
С	1.230537000	3.912233000	-0.154825000
С	3.199308000	5.315339000	0.115630000
С	2.375984000	6.436691000	0.286819000
С	1.000367000	6.298659000	0.242630000
Η	4.279356000	5.416234000	0.156480000
Η	2.813823000	7.414908000	0.459834000
Η	0.391165000	7.181465000	0.390139000
С	0.566032000	2.649673000	-0.352229000
С	-0.812395000	2.527088000	-0.317302000
С	-1.698959000	3.647054000	-0.189913000
С	-3.100474000	3.518452000	-0.266109000
С	-1.085274000	4.922894000	-0.021289000
С	-3.903515000	4.639108000	-0.163246000
Η	-3.550729000	2.546855000	-0.436853000
С	-1.944584000	6.039156000	0.086742000
С	-3.320813000	5.902507000	0.020995000
Η	-4.980365000	4.531889000	-0.240979000
Η	-1.532607000	7.033000000	0.211423000
Η	-3.949511000	6.784214000	0.101125000
С	0.012612000	0.490031000	-0.612940000
N	1.064274000	1.354179000	-0.557812000
N	-1.116532000	1.186718000	-0.464718000
С	-4.566839000	-0.211640000	-0.056060000
С	-5.931769000	-0.137574000	-0.557722000
С	-6.966607000	-0.910615000	-0.079167000
С	-6.741308000	-1.778453000	0.994323000

С	-5.486761000	-1.867444000	1.585750000
С	-4.449235000	-1.086170000	1.103445000
Н	-7.949741000	-0.840737000	-0.526111000
Н	-5.323909000	-2.531792000	2.424245000
0	-3.606980000	0.356869000	-0.633780000
Н	-2.091086000	0.759844000	-0.431644000
N	-3.184214000	-1.188612000	1.793242000
N	-6.257855000	0.797416000	-1.634047000
N	-7.835998000	-2.580834000	1.511179000
0	-2.905141000	-2.245550000	2.371800000
0	-7.158703000	0.477541000	-2.413732000
0	-8.938027000	-2.467962000	0.967359000
0	-7.601189000	-3.330513000	2.463505000
0	-5.648363000	1.866735000	-1.682786000
0	-2.428287000	-0.205556000	1.781712000
С	2.442163000	0.938211000	-0.663136000
С	4.448393000	0.712174000	-1.982831000
С	4.386706000	-0.053068000	0.337772000
С	5.073543000	0.118704000	-0.883275000
Η	4.977630000	0.844237000	-2.921385000
С	5.275312000	-0.747182000	1.375572000
С	6.425660000	-0.424677000	-0.738863000
С	6.565511000	-0.934268000	0.567836000
С	7.480693000	-0.472773000	-1.652250000
С	7.789635000	-1.466105000	0.968248000
С	8.693711000	-1.030034000	-1.248110000
Η	7.365880000	-0.079013000	-2.658207000

С	8.847287000	-1.517542000	0.053579000
Η	7.938486000	-1.832040000	1.978656000
Η	9.525707000	-1.077379000	-1.944058000
Η	9.800272000	-1.937677000	0.360989000
С	5.586613000	0.157273000	2.608880000
Η	6.035916000	1.085216000	2.236265000
Η	6.371827000	-0.339567000	3.189690000
С	4.602751000	-2.100333000	1.769527000
Η	3.604566000	-1.876503000	2.163428000
Η	4.438434000	-2.670598000	0.848041000
С	4.423027000	0.499982000	3.544814000
Η	3.934076000	-0.392514000	3.947275000
Η	4.793427000	1.078909000	4.396673000
Η	3.662574000	1.110497000	3.050190000
С	5.344498000	-2.981101000	2.779536000
Η	6.303830000	-3.330318000	2.389162000
Η	5.528988000	-2.464289000	3.726538000
Η	4.743772000	-3.867818000	3.004732000
С	3.122170000	1.126303000	-1.869239000
Η	2.612889000	1.595559000	-2.704879000
С	2.633106000	4.072520000	-0.100083000
Η	3.277920000	3.213355000	-0.219046000
С	3.058024000	0.344629000	0.444415000
Η	2.486654000	0.200719000	1.354270000
С	0.114725000	-0.966572000	-0.821321000
С	0.642159000	-1.472588000	-2.019408000
С	-0.321249000	-1.853736000	0.173463000

С	0.729984000	-2.846184000	-2.224594000
С	-0.238514000	-3.229956000	-0.029118000
С	0.288178000	-3.713400000	-1.225093000
Br	0.408478000	-5.595261000	-1.505558000
Н	1.129423000	-3.240089000	-3.151673000
Н	-0.725763000	-1.472465000	1.104190000
Н	0.973440000	-0.795315000	-2.799059000
Н	-0.584654000	-3.912230000	0.738115000

PhPh+ PA

89

С	0.762380000	4.381939000	0.281321000
С	1.493174000	3.200580000	-0.076965000
С	3.595230000	4.406339000	0.158117000
С	2.893104000	5.559583000	0.533970000
С	1.511109000	5.540206000	0.586949000
Η	4.679083000	4.418727000	0.098357000
Η	3.429127000	6.472160000	0.775680000
Η	0.996062000	6.450234000	0.867806000
С	0.702660000	2.030504000	-0.361724000
С	-0.680165000	2.058588000	-0.345183000
С	-1.446682000	3.227396000	-0.032901000
С	-2.856268000	3.239133000	-0.066019000
С	-0.706370000	4.396875000	0.305642000
С	-3.543118000	4.396172000	0.251066000
Η	-3.405805000	2.348845000	-0.353929000
С	-1.449751000	5.553209000	0.633011000

С	-2.834187000	5.553839000	0.609545000
Η	-4.627485000	4.399722000	0.213700000
Η	-0.940592000	6.469772000	0.904655000
Η	-3.371836000	6.462458000	0.863518000
С	-0.221765000	-1.402687000	-1.326973000
С	-1.293195000	-1.727755000	-2.179878000
С	0.644301000	-2.419823000	-0.892603000
С	-1.481649000	-3.042214000	-2.596405000
Η	-1.978937000	-0.953996000	-2.506531000
С	0.446397000	-3.731370000	-1.315101000
Η	1.452551000	-2.195397000	-0.208762000
С	-0.611335000	-4.046439000	-2.169311000
Η	1.114066000	-4.511621000	-0.963800000
С	-0.085328000	-0.007091000	-0.897193000
N	1.059075000	0.714812000	-0.707802000
N	-1.128373000	0.799511000	-0.679808000
С	-4.547136000	-0.519243000	-0.161049000
С	-5.955700000	-0.284592000	-0.444275000
С	-6.978930000	-1.075510000	0.030912000
С	-6.681837000	-2.135884000	0.890718000
С	-5.370068000	-2.400159000	1.266672000
С	-4.339983000	-1.610684000	0.780569000
Η	-8.003136000	-0.871827000	-0.252701000
Η	-5.149884000	-3.216559000	1.941284000
0	-3.639964000	0.121704000	-0.754937000
Η	-2.135000000	0.447359000	-0.613054000
N	-3.006936000	-1.931095000	1.266732000

Ν	-6.348059000	0.845753000	-1.286967000
N	-7.758067000	-2.961044000	1.411416000
0	-2.809853000	-3.057845000	1.730591000
0	-7.355959000	0.710341000	-1.985819000
0	-8.910506000	-2.689730000	1.062283000
0	-7.459478000	-3.887073000	2.170996000
0	-5.683356000	1.881063000	-1.229214000
0	-2.136641000	-1.053338000	1.223377000
Η	-2.310746000	-3.280475000	-3.254978000
Η	-0.762209000	-5.071578000	-2.493141000
С	2.393877000	0.192997000	-0.865377000
С	4.205705000	-0.488443000	-2.303358000
С	4.419448000	-0.635649000	0.127126000
С	4.947405000	-0.824858000	-1.169291000
Η	4.613154000	-0.632102000	-3.299197000
С	5.415071000	-1.093050000	1.198664000
С	6.287599000	-1.402615000	-1.046778000
С	6.579863000	-1.569974000	0.321981000
С	7.211759000	-1.753443000	-2.032929000
С	7.826845000	-2.062986000	0.701005000
С	8.447332000	-2.269452000	-1.642391000
Η	6.979615000	-1.622950000	-3.086103000
С	8.753259000	-2.417572000	-0.285925000
Η	8.094253000	-2.167111000	1.747239000
Η	9.178831000	-2.548840000	-2.394500000
Η	9.723288000	-2.808301000	0.006631000
С	5.917840000	0.082226000	2.094795000

Н	6.352409000	0.841552000	1.434168000
Н	6.751083000	-0.298018000	2.696445000
С	4.758862000	-2.244953000	2.023149000
Н	3.829768000	-1.858603000	2.458255000
Η	4.457005000	-3.027804000	1.317379000
С	4.898030000	0.747062000	3.025184000
Η	4.420337000	0.030997000	3.701144000
Η	5.400026000	1.494578000	3.647576000
Н	4.113434000	1.268756000	2.470355000
С	5.598565000	-2.874067000	3.139077000
Η	6.486489000	-3.376916000	2.747515000
Η	5.922318000	-2.137904000	3.881417000
Η	5.004640000	-3.627290000	3.666147000
С	2.921099000	0.032890000	-2.147692000
Η	2.324052000	0.306785000	-3.011018000
С	2.904298000	3.247017000	-0.143316000
Η	3.457752000	2.368584000	-0.442232000
С	3.127799000	-0.144610000	0.280102000
Н	2.671609000	-0.018361000	1.255833000

PhNp+ PA

95

С	-0.273853000	4.683838000	-0.632010000
С	-1.154828000	3.607249000	-0.287210000
С	-3.077857000	4.920651000	-0.987832000
С	-2.227680000	5.982503000	-1.326555000
С	-0.860969000	5.858920000	-1.151612000

Η	-4.150522000	5.010599000	-1.128218000
Η	-2.637628000	6.902936000	-1.730718000
Η	-0.230479000	6.693633000	-1.431221000
С	-0.526834000	2.415530000	0.220770000
С	0.846996000	2.297338000	0.333946000
С	1.758109000	3.362693000	0.037491000
С	3.148656000	3.251673000	0.243960000
С	1.180183000	4.570331000	-0.451381000
С	3.975911000	4.321526000	-0.042760000
Η	3.565058000	2.335214000	0.648380000
С	2.064103000	5.635327000	-0.736329000
С	3.429194000	5.514877000	-0.540697000
Η	5.044321000	4.235248000	0.126643000
Η	1.679701000	6.577254000	-1.107952000
Η	4.077782000	6.355832000	-0.766816000
С	-0.019956000	0.369986000	0.988693000
N	-1.054938000	1.188773000	0.649603000
N	1.122510000	1.028114000	0.801297000
С	4.448359000	-0.488452000	0.387012000
С	5.787513000	-0.594844000	0.947753000
С	6.794166000	-1.354848000	0.398357000
С	6.568789000	-2.015250000	-0.814783000
С	5.348535000	-1.904622000	-1.468520000
С	4.331782000	-1.144694000	-0.908574000
Η	7.753486000	-1.432036000	0.893279000
Η	5.191022000	-2.400668000	-2.416826000
0	3.514969000	0.057658000	1.028983000

Η	2.094165000	0.573156000	0.840006000
N	3.114077000	-1.030392000	-1.685224000
N	6.111049000	0.140333000	2.171532000
N	7.632025000	-2.805442000	-1.409954000
0	2.884450000	-1.877641000	-2.554809000
0	6.918792000	-0.375811000	2.948720000
0	8.706836000	-2.869610000	-0.806281000
0	7.400965000	-3.369343000	-2.483621000
0	5.596300000	1.245631000	2.337621000
0	2.362316000	-0.070892000	-1.461894000
С	-2.441090000	0.807553000	0.776910000
С	-4.491369000	0.829981000	2.046647000
С	-4.360392000	-0.341591000	-0.094021000
С	-5.085603000	0.050466000	1.051061000
Η	-5.049416000	1.129290000	2.928403000
С	-5.217186000	-1.215020000	-1.016387000
С	-6.436739000	-0.507846000	0.961135000
С	-6.536157000	-1.248043000	-0.234413000
С	-7.522863000	-0.386556000	1.830110000
С	-7.750094000	-1.842183000	-0.573367000
С	-8.726006000	-1.006328000	1.492396000
Η	-7.439258000	0.184648000	2.750407000
С	-8.839103000	-1.723594000	0.297347000
Η	-7.866981000	-2.386329000	-1.504680000
Η	-9.581721000	-0.923716000	2.155613000
Η	-9.784527000	-2.190975000	0.038456000
С	-5.478532000	-0.557041000	-2.406978000

Η	-5.936303000	0.423392000	-2.230683000
Η	-6.244590000	-1.154558000	-2.914078000
С	-4.540670000	-2.618456000	-1.125620000
Η	-3.524833000	-2.475055000	-1.511058000
Η	-4.418738000	-3.007661000	-0.108296000
С	-4.279394000	-0.392462000	-3.346377000
Η	-3.778753000	-1.343098000	-3.554264000
Η	-4.615097000	0.014548000	-4.305437000
Η	-3.535875000	0.302472000	-2.946689000
С	-5.250244000	-3.670375000	-1.983587000
Η	-6.228581000	-3.938265000	-1.576105000
Η	-5.390732000	-3.339371000	-3.017418000
Η	-4.649633000	-4.584935000	-2.014105000
С	-3.158132000	1.211525000	1.905994000
Η	-2.670337000	1.816504000	2.663228000
С	-2.547111000	3.750651000	-0.476721000
Η	-3.209850000	2.933864000	-0.226377000
С	-3.025459000	0.026281000	-0.225894000
Η	-2.424288000	-0.287234000	-1.071031000
С	-0.163887000	-0.992486000	1.549510000
С	-0.296508000	-1.119257000	2.920430000
С	-0.189604000	-2.147233000	0.703218000
С	-0.479180000	-2.386931000	3.514945000
С	-0.390426000	-3.428121000	1.316998000
С	-0.008729000	-2.084950000	-0.704902000
С	-0.534131000	-3.512574000	2.726930000
С	-0.428501000	-4.587038000	0.495980000

Η	0.217668000	-1.136186000	-1.179735000
С	-0.034355000	-3.232138000	-1.467459000
Н	-0.680631000	-4.490738000	3.176965000
С	-0.258093000	-4.493345000	-0.865765000
Η	-0.583183000	-5.553245000	0.968419000
Η	0.146725000	-3.165882000	-2.535014000
Η	-0.275595000	-5.387701000	-1.480980000
Η	-0.259886000	-0.233787000	3.547423000
Н	-0.577124000	-2.462520000	4.592924000

PhAn+ PA

101

С	0.318287000	4.773876000	0.429000000
С	1.177631000	3.660282000	0.154196000
С	3.135590000	5.013463000	0.653612000
С	2.306255000	6.109211000	0.930307000
С	0.933037000	5.984653000	0.818436000
Η	4.213764000	5.106105000	0.739505000
Η	2.737781000	7.058073000	1.233735000
Η	0.319773000	6.848527000	1.042206000
С	0.522538000	2.434340000	-0.220816000
С	-0.855040000	2.328145000	-0.297667000
С	-1.745724000	3.427278000	-0.070479000
С	-3.142558000	3.317842000	-0.230422000
С	-1.141727000	4.663056000	0.302872000
С	-3.950218000	4.417724000	-0.008967000

Η	-3.579268000	2.376410000	-0.546451000
С	-2.006269000	5.758423000	0.525460000
С	-3.377433000	5.639985000	0.377013000
Н	-5.023879000	4.331871000	-0.141405000
Н	-1.602009000	6.721824000	0.810964000
Н	-4.010730000	6.504275000	0.552934000
С	-0.027403000	0.336802000	-0.797232000
Ν	1.024561000	1.166143000	-0.546930000
Ν	-1.156936000	1.028190000	-0.650293000
С	-4.485983000	-0.414067000	-0.041660000
С	-5.833074000	-0.576492000	-0.569204000
С	-6.826521000	-1.288450000	0.062302000
С	-6.578591000	-1.835972000	1.326241000
С	-5.349098000	-1.661300000	1.947928000
С	-4.345515000	-0.950424000	1.305850000
Η	-7.792847000	-1.414206000	-0.408422000
Η	-5.174152000	-2.068914000	2.934525000
0	-3.566162000	0.076630000	-0.744856000
Η	-2.135248000	0.586419000	-0.631989000
Ν	-3.117307000	-0.760039000	2.050683000
Ν	-6.179939000	0.044206000	-1.848847000
Ν	-7.627794000	-2.573965000	2.006909000
0	-2.870520000	-1.522862000	2.990850000
0	-6.997801000	-0.542768000	-2.562759000
0	-8.711578000	-2.696858000	1.428815000
0	-7.376944000	-3.038064000	3.123134000
0	-5.673384000	1.131653000	-2.122146000

0	-2.374651000	0.178601000	1.729702000
С	2.403433000	0.742641000	-0.618721000
С	4.436498000	0.486989000	-1.889272000
С	4.324359000	-0.228335000	0.444777000
С	5.037931000	-0.080861000	-0.763806000
Η	4.984477000	0.595290000	-2.820080000
С	5.186845000	-0.906336000	1.514530000
С	6.386358000	-0.622013000	-0.577871000
С	6.495837000	-1.107572000	0.740978000
С	7.462415000	-0.687804000	-1.465121000
С	7.709867000	-1.632529000	1.179322000
С	8.665565000	-1.237803000	-1.022702000
Η	7.370993000	-0.312784000	-2.480601000
С	8.788789000	-1.701226000	0.290845000
Η	7.834590000	-1.979654000	2.199681000
Η	9.513471000	-1.297987000	-1.698277000
Η	9.734206000	-2.115622000	0.628169000
С	5.469311000	0.015677000	2.741217000
Η	5.933360000	0.935538000	2.366472000
Η	6.235807000	-0.475183000	3.351615000
С	4.503467000	-2.253525000	1.911043000
Η	3.491541000	-2.027825000	2.266242000
Η	4.370460000	-2.839850000	0.994648000
С	4.281735000	0.379162000	3.638452000
Η	3.773731000	-0.504724000	4.036396000
Η	4.631272000	0.965664000	4.494037000
Η	3.541379000	0.988984000	3.113608000

С	5.214682000	-3.114763000	2.959185000
Η	6.188564000	-3.465244000	2.607528000
Η	5.364873000	-2.582501000	3.903774000
Η	4.610456000	-4.000853000	3.178025000
С	3.108500000	0.904837000	-1.813309000
Η	2.613927000	1.342064000	-2.673757000
С	2.577515000	3.807361000	0.271831000
Η	3.224881000	2.966715000	0.064160000
С	2.994035000	0.170553000	0.513883000
Η	2.400560000	0.038138000	1.410694000
С	0.093823000	-1.072701000	-1.231171000
С	0.174632000	-1.342746000	-2.617014000
С	0.161348000	-2.106388000	-0.270212000
С	0.067352000	-0.328365000	-3.620225000
С	0.373795000	-2.705226000	-3.050045000
С	0.365459000	-3.462721000	-0.723156000
С	0.016427000	-1.878074000	1.134186000
С	0.157270000	-0.639262000	-4.952109000
Η	-0.113743000	0.699018000	-3.321575000
С	0.466233000	-2.983893000	-4.448929000
С	0.473604000	-3.720028000	-2.093055000
С	0.444880000	-4.512990000	0.243483000
Η	-0.216710000	-0.882529000	1.495845000
С	0.077370000	-2.918538000	2.025450000
С	0.363410000	-1.982545000	-5.376122000
Η	0.059933000	0.145828000	-5.695785000
Н	0.615431000	-4.014255000	-4.759593000

Η	0.630841000	-4.743339000	-2.425721000
С	0.308438000	-4.251115000	1.579861000
Η	0.603404000	-5.527840000	-0.110716000
Η	-0.082258000	-2.724737000	3.080907000
Η	0.429770000	-2.206412000	-6.436128000
Η	0.355642000	-5.058086000	2.304419000

Table ST9: Computed Vertical Transitions and Their Oscillator Strengths and Configurations of the crystals of the fluorophores.

PhBr

Excited State 1: Singlet-A 3.4418 eV 360.23 nm f=0.0029 <S**2>=0.000 0.69761 153 ->154 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -4146.14737638Copying the excited state density for this state as the 1-particle RhoCI density. 3.6607 eV 338.69 nm f=0.5872 <S**2>=0.000 Excited State 2: Singlet-A 153 ->155 0.65375 153 ->156 -0.15760 153 ->157 0.12951 3.8148 eV 325.01 nm f=0.0839 <S**2>=0.000 Excited State 3: Singlet-A 152 ->155 -0.18010-0.11123 152 ->158 153 ->155 0.21677 153 ->156 0.58882 153 ->157 -0.23020 Excited State 4: Singlet-A 3.9342 eV 315.14 nm f=0.0051 <S**2>=0.000 0.18574 152 ->155 153 ->156 0.32341 153 ->157 0.58008 4.1267 eV 300.45 nm f=0.0042 <S**2>=0.000 Excited State 5: Singlet-A -0.12848152 ->154 152 ->155 -0.35516 152 ->157 -0.10367 153 ->157 0.16535 153 ->158 0.54140 Excited State 6: Singlet-A 4.1782 eV 296.74 nm f=0.0073 <S**2>=0.000 152 ->154 0.68750 0.10694 153 ->158

Excited State 152 ->155 152 ->156 152 ->157 153 ->157 153 ->158	7: Singlet-A 0.50930 0.21165 -0.16500 -0.16172 0.31858	4.3231 eV 286.80 nm f=0.1488 <s**2>=0.000</s**2>
Excited State 147 ->155 153 ->159 153 ->160	8: Singlet-A -0.14144 0.56519 -0.34338	4.4704 eV 277.35 nm f=0.0173 <s**2>=0.000</s**2>
Excited State 151 ->154 151 ->155 151 ->156	9: Singlet-A 0.44411 0.49854 0.12113	4.5573 eV 272.06 nm f=0.1177 <s**2>=0.000</s**2>
Excited State 146 ->154 147 ->154 151 ->154 151 ->155 151 ->156 151 ->157	10: Singlet-A 0.11121 -0.10901 -0.41179 0.47100 -0.15941 -0.12908	4.5938 eV 269.90 nm f=0.2699 <s**2>=0.000</s**2>

Triplet State

Excited State	1:	Triplet-A	2.6625 eV	465.67 nm	f=0.0000	<s**2>=2.000</s**2>
150 ->155		0.10914				
152 ->156		0.10039				
152 ->157		-0.12770				
153 ->154		0.14133				
153 ->155		0.60561				
153 ->158		0.13705				
This state for	opti	mization and/	or second-or	der correctio	m.	
Total Energy,	E(7	TD-HF/TD-DF	FT = -4146.	17601486		
Copying the e	excit	ted state densit	ty for this sta	te as the 1-p	article Rho	oCI density.

Excited State	2: Triplet-A	3.0838 eV 402.05 nm f=0.0000 <s**2>=2.000</s**2>
149 ->155	-0.12068	
150 ->155	-0.11994	
150 ->158	-0.11422	
150 ->161	0.12294	
152 ->155	-0.11106	
152 ->156	0.24432	
152 ->157	-0.28577	
153 ->155	-0.20361	
153 ->158	0.42741	

Excited State 140 ->163 146 ->156 148 ->159 148 ->160 151 ->154 151 ->155 151 ->156	3: Triplet-A 0.12304 0.10237 0.13266 0.11107 0.59906 -0.10981 -0.14288	3.2057 eV	386.76 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 150 ->158 153 ->154 153 ->155 153 ->156 153 ->157	4: Triplet-A -0.13381 -0.25025 0.14046 -0.40583 0.40799	3.3396 eV	371.26 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 153 ->154 153 ->155 153 ->156 153 ->157	5: Triplet-A 0.63232 -0.11681 -0.18178 0.17869	3.4477 eV	359.62 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 150 ->155 152 ->155 152 ->156 152 ->157 153 ->157 153 ->158	6: Triplet-A -0.13539 0.29819 -0.26940 0.30450 -0.11182 0.40366	3.5906 eV	345.30 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 144 ->157 149 ->155 150 ->155 150 ->158 152 ->154 152 ->156 152 ->156 152 ->157 153 ->157 153 ->161	7: Triplet-A -0.10251 -0.19800 -0.19164 0.26261 0.11141 0.24315 0.14275 -0.13724 0.11448 0.20802 0.27381	3.7779 eV	328.18 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 153 ->156 153 ->157 153 ->159	8: Triplet-A 0.48090 0.39812 0.21072	3.8606 eV	321.15 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 149 ->155	9: Triplet-A 0.24684	3.8790 eV	319.63 nm	f=0.0000	<s**2>=2.000</s**2>

150 ->158	-0.17230	
152 ->154	0.15007	
152 ->155	0.44563	
152 ->156	0.11882	
152 ->157	-0.16584	
152 ->158	0.17873	
153 ->161	-0.18776	
Excited State	10: Triplet-A	3.9721 eV 312.14 nm f=0.0000 <s**2>=2.000</s**2>
140 ->154	0.19683	
146 ->156	0.17051	
146 ->157	0.11039	
146 ->160	0.14100	
147 ->156	-0.11523	
147 ->159	-0.11124	
147 ->160	-0.13210	
148 ->154	0.27881	
148 ->156	0.21638	
148 ->157	0.19352	
148 ->159	-0.21164	
148 ->160	-0.10038	
151 ->156	-0.14250	
151 ->157	-0.10035	
151 ->163	0.17936	
PhPh		
Excited State	1. Singlet A	3.4805 eV 356.23 nm f=0.0421 <s**2>=0.000</s**2>

Excited State 1: Singlet-A 3.4805 eV 356.23 nm f=0.0421 <S**2>=0.000 0.70019 136 ->137 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1575.19614361Copying the excited state density for this state as the 1-particle RhoCI density

Copying the excited state densit	y for this state as	the 1-particle RhoCl	density.

Excited State	2: Singlet-A	3.7993 eV 326.34 nm f= $0.1006 < S^{**}2 > = 0.000$
135 ->137	0.15432	
135 ->138	0.10684	
135 ->140	-0.10502	
135 ->141	-0.12775	
136 ->138	0.53747	
136 ->139	-0.31338	
136 ->140	0.18556	
Excited State	3: Singlet-A	4.0119 eV 309.04 nm f=0.1833 <s**2>=0.000</s**2>
135 ->138	-0.11137	
136 ->138	0.32771	
136 ->139	0.60062	
Excited State	4: Singlet-A	4.0670 eV 304.85 nm f=0.0377 <s**2>=0.000</s**2>
135 ->137	0.17405	
135 ->138	0.19234	
136 ->138	-0.22664	

136 ->139 136 ->140	0.10872 0.59282	
Excited State 135 ->137 136 ->140	5: Singlet-A 0.65625 -0.21372	4.1415 eV 299.37 nm f=0.1356 <s**2>=0.000</s**2>
Excited State 135 ->138 136 ->141	6: Singlet-A 0.26578 0.60929	4.2914 eV 288.91 nm f=0.0782 <s**2>=0.000</s**2>
Excited State 134 ->137 134 ->139 135 ->139	7: Singlet-A 0.64985 0.10976 0.11296	4.4238 eV 280.27 nm f=0.3908 <s**2>=0.000</s**2>
Excited State 134 ->137 134 ->138 135 ->138 135 ->139 136 ->140	8: Singlet-A -0.12927 -0.12362 0.35682 0.50098 -0.12051	4.5877 eV 270.25 nm f=0.0490 <s**2>=0.000</s**2>
Excited State 129 ->137 133 ->137 134 ->138 134 ->139 134 ->140 135 ->138 135 ->139 135 ->140 136 ->141	9: Singlet-A -0.19880 -0.14303 -0.20764 0.25134 0.27096 -0.24787 0.16049 0.33363 0.13423	4.6281 eV 267.90 nm f=0.1355 <s**2>=0.000</s**2>
Excited State 132 ->137 132 ->138 136 ->142 136 ->143	10: Singlet-A -0.11492 -0.13088 0.51220 -0.40955	4.6804 eV 264.90 nm f=0.0015 <s**2>=0.000</s**2>

Triplet State

Excited State	1:	Triplet-A	2.8410 eV	436.42 nm	f=0.0000	<s**2>=2.000</s**2>
133 ->141		-0.10280				
135 ->138		-0.18984				
135 ->139		0.12264				
135 ->140		-0.13168				
136 ->137		0.33420				
136 ->138		0.38789				

136 ->139	0.20023
136 ->140	-0.18442
136 ->141	-0.18243

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1575.21964531Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Triplet-A	3.0759 eV 403.09 nm f=0.0000 < S**2=2.000)
129 ->140	0.10859		
134 ->137	0.56129		
134 ->139	-0.15204		
135 ->137	0.17264		
136 ->137	0.13358		
Excited State	2. Trialat A	2.2762 eV 278 42 mm f=0.0000 < S**2>-2.000	h
Exclued State $122 > 142$	5: Implet-A	$3.2/03 \text{ eV} 3/8.42 \text{ nm} 1=0.0000 \langle S^{**}2 \rangle = 2.000$	J
132 -> 143	-0.11291		
133 - >138	-0.13776		
133 ->144	-0.11249		
135 ->138	0.22979		
135 ->139	-0.19/04		
135 ->140	0.18165		
136 ->137	0.18911		
136 ->138	0.29248		
136 ->140	0.10942		
136 ->141	0.32969		
Excited State	4: Triplet-A	3.3773 eV 367.11 nm f=0.0000 <s**2>=2.000</s**2>)
133 ->141	-0.10358		
136 ->137	-0.27492		
136 ->138	0.41722		
136 ->139	-0.33833		
136 ->140	0.26060		
Excited State	5: Triplet-A	3.5579 eV 348.48 nm f=0.0000 <s**2>=2.000</s**2>)
133 ->138	0.11052		
135 ->138	0.12427		
136 ->137	0.44887		
136 ->139	-0.31284		
136 ->140	0.10297		
136 ->141	-0.23877		
Excited State	6. Triplet-A	36688 eV 337.95 nm f=0.0000 < S**2>=2.000)
135 ->138	0 32850	5.0000 CV 557.55 IIII 1 0.0000 (5 2) 2.000	,
135 ->139	-0 19269		
135 ->140	0 16808		
136 ->137	-0 21810		
136 ->138	0 16652		
136 ->130	0 13241		
136 -> 137	-0 27280		
136 -> 140 136 -> 1/11	-0 32631		
100 -/ 141	-0.52051		

Excited State	7: Triplet-A	3.8433 eV 322.59 nm f=0.0000 <s**2>=2.000</s**2>
127 ->138	0.11497	
130 ->138	0.11462	
131 ->138	0.16614	
131 ->139	0.10896	
132 ->142	0.10052	
132 ->143	-0.20221	
133 ->141	-0.28810	
135 ->146	-0.11207	
136 ->138	-0.12473	
136 ->140	-0.13803	
136 ->144	0.35092	
Excited State	8: Triplet-A	3.8960 eV 318.24 nm f=0.0000 <s**2>=2.000</s**2>
135 ->137	0.44858	
135 ->138	0.29903	
135 ->139	0.22949	
135 ->140	-0.19552	
135 ->141	-0.18962	
Excited State	9: Triplet-A	3.9464 eV 314.17 nm f=0.0000 <s**2>=2.000</s**2>
129 ->139	-0.13565	
129 ->140	-0.13590	
129 ->142	0.11247	
130 ->140	-0.10348	
134 ->139	0.19411	
134 ->140	0.21789	
134 ->145	0.11241	
136 ->139	0.25798	
136 ->140	0.30846	
136 ->141	-0.13079	
Excited State	10: Triplet-A	3.9934 eV 310.47 nm f=0.0000 <s**2>=2.000</s**2>
124 ->137	0.14542	
126 ->137	-0.11883	
129 ->137	0.12758	
129 ->142	-0.13323	
130 ->137	0.13782	
130 ->140	0.13869	
130 ->142	0.17269	
131 ->140	-0.13591	
131 ->142	-0.18118	
134 ->137	0.14658	
134 ->139	0.19031	
134 ->140	0.14905	
134 ->145	-0.16947	
135 ->140	0.12731	
136 ->139	0.18733	
136 ->140	0.15312	

PhNp

Excited State 1: Singlet-A 3.5207 eV 352.15 nm f=0.0476 <S**2>=0.000 149 ->150 0.70355 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1728.62517954Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 3.7086 eV 334.32 nm f=0.0356 <S**2>=0.000 149 ->151 0.69725 Excited State 3: 3.9163 eV 316.58 nm f=0.0144 <S**2>=0.000 Singlet-A 148 ->150 -0.15610148 ->153 0.23621 149 ->152 0.61416 149 ->153 -0.11263 4.1039 eV 302.11 nm f=0.0542 <S**2>=0.000 Excited State 4: Singlet-A 148 ->150 0.66806 149 ->152 0.16321 4.2065 eV 294.74 nm f=0.0664 <S**2>=0.000 Excited State 5: Singlet-A 148 ->151 0.23487 148 ->152 -0.29605 149 ->153 0.56984 4.2701 eV 290.36 nm f=0.0409 <S**2>=0.000 Excited State 6: Singlet-A 146 ->150 0.29905 146 ->151 0.13287 147 ->150 0.51966 148 ->151 0.30042 4.2927 eV 288.83 nm f=0.0128 <S**2>=0.000 Excited State 7: Singlet-A 146 ->150 0.18324 147 ->150 -0.27388148 ->151 0.24572 149 ->152 -0.11753149 ->153 -0.10106 149 ->154 0.52152 4.3084 eV 287.77 nm f=0.0246 <S**2>=0.000 Excited State 8: Singlet-A 147 ->150 -0.24388 147 ->151 0.12037 148 ->151 0.45746 148 ->152 0.10330 149 ->153 -0.11965 149 ->154 -0.40861

Excited State	9: Singlet-A	4.3395 eV 285.71 nm f=0.0621 <s**2>=0.000</s**2>
146 ->150	0.56273	
147 ->150	-0.15679	
147 ->151	0.17970	
148 ->151	-0.26142	
149 ->154	-0.13881	
Excited State	10: Singlet-A	4.4693 eV 277.41 nm f=0.0583 <s**2>=0.000</s**2>
144 ->150	-0.19305	
146 ->151	-0.30046	
147 ->150	0.19511	
147 ->151	0.45522	
147 ->155	-0.13021	
149 ->155	-0.25407	

Triplet State

Excited State 1: Triplet-A 2.7952 eV 443.56 nm f=0.0000 <S**2>=2.000 144 ->155 -0.13498 146 ->150 -0.24397 146 ->151 -0.13991 147 ->150 0.45842 147 ->151 0.28184 149 ->150 0.25440 149 ->151 0.10951 This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -1728.65184333

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2: Triplet-A	2.9677 eV	417.78 nm	f=0.0000	<s**2>=2.000</s**2>
145 ->157	0.12531				
148 ->152	-0.32142				
149 ->150	-0.16749				
149 ->151	0.12418				
149 ->152	0.13044				
149 ->153	0.48919				
Excited State	3: Triplet-A	3.1056 eV	399.23 nm	f=0.0000	<s**2>=2.000</s**2>
142 ->154	0.12339				
143 ->156	-0.12912				
146 ->150	-0.30803				
146 ->151	0.43477				
147 ->150	-0.15653				
147 ->151	0.22576				
148 ->150	-0.10837				
148 ->151	0.14030				
Excited State	4: Triplet-A	3.4588 eV	358.46 nm	f=0.0000	<s**2>=2.000</s**2>
149 ->150	0.11242				

149 ->151 149 ->152 149 ->153 149 ->154	-0.18006 0.61299 -0.11793 0.10761				
Excited State 147 ->150 148 ->152 149 ->150 149 ->152 149 ->157	5: Triplet-A -0.15845 -0.29574 0.52759 -0.13656 0.14304	3.4637 eV	357.95 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 148 ->152 149 ->150 149 ->151 149 ->152 149 ->153	6: Triplet-A 0.37699 0.21975 0.37789 0.12181 0.28637	3.6449 eV	340.16 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 148 ->152 149 ->150 149 ->151 149 ->153	7: Triplet-A -0.18800 -0.18542 0.51789 -0.33667	3.7438 eV	331.17 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 140 ->152 145 ->153 148 ->152 148 ->160 149 ->150 149 ->151 149 ->152 149 ->154 149 ->156 149 ->157 149 ->158	8: Triplet-A -0.13692 0.27167 0.10281 -0.11839 -0.13554 -0.12188 -0.11824 -0.10245 0.14942 0.43824 -0.11088	3.8754 eV	319.92 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 148 ->150 148 ->153	9: Triplet-A 0.49750 -0.40424	3.9558 eV	313.42 nm	f=0.0000	<s**2>=2.000</s**2>
Excited State 136 ->151 142 ->150 142 ->154 142 ->156 143 ->150 143 ->151 143 ->154	10: Triplet-A 0.14529 -0.15991 0.14247 -0.19808 -0.17615 0.14470 0.27901	4.0234 eV	308.16 nm	f=0.0000	<s**2>=2.000</s**2>

143 ->155	-0.10100
143 ->156	0.20156
146 ->159	-0.17739
147 ->151	-0.11572

PhAn

3.0966 eV 400.39 nm f=0.0008 <S**2>=0.000 Excited State 1: Singlet-A 162 ->163 0.70213 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -1882.23589179Copying the excited state density for this state as the 1-particle RhoCI density. 3.3547 eV 369.58 nm f=0.1060 <S**2>=0.000 Excited State 2: Singlet-A 0.69539 161 ->163 3.6002 eV 344.38 nm f=0.0007 <S**2>=0.000 Excited State 3: Singlet-A 159 ->163 0.11945 160 ->163 0.69314 Excited State 4: Singlet-A 3.7756 eV 328.38 nm f=0.0182 <S**2>=0.000 162 ->164 0.69926 3.8040 eV 325.93 nm f=0.0019 <S**2>=0.000 Excited State 5: Singlet-A 159 ->163 0.69344 160 ->163 -0.11878 3.8518 eV 321.89 nm f=0.0040 <S**2>=0.000 Excited State 6: Singlet-A 157 ->163 0.13276 161 ->164 0.67685 3.9222 eV 316.11 nm f=0.0199 <S**2>=0.000 Excited State 7: Singlet-A 160 ->164 0.11900 160 ->166 -0.19681 160 ->167 0.14289 162 - > 1650.63436 Excited State 8: Singlet-A 3.9896 eV 310.77 nm f=0.0063 <S**2>=0.000 157 ->163 0.41142 158 ->163 0.28373 161 ->164 -0.19119161 ->166 0.10905 161 ->167 0.33563 161 ->168 -0.27681 Excited State 9: Singlet-A 4.2321 eV 292.96 nm f=0.0929 <S**2>=0.000 160 ->164 0.65761 160 ->165 -0.10115 162 ->165 -0.11980
162 ->166 -0.18245

Excited State 10: Singlet-A 4.2562 eV 291.30 nm f=0.0366 <S**2>=0.000 160 ->164 0.20325 160 ->165 0.34869 162 ->166 0.52462 162 ->167 -0.20220

Triplet States

Excited State 1: Triplet-A 1.9720 eV 628.73 nm f=0.0000 <S**2>=2.000 161 ->163 0.68715 161 <-163 0.11882

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -1882.27722094

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 152 ->174 158 ->171 159 ->165 160 ->165 162 ->164 162 ->166 162 ->167 162 ->168	2: Triplet-A 0.10372 -0.10634 -0.11556 0.42513 -0.15394 0.36268 -0.24777 -0.12742	2.9897 eV 414.71 nm f=0.0000 <s**2>=2.000</s**2>
Excited State	3: Triplet-A	3.0902 eV 401.22 nm f=0.0000 <s**2>=2.000</s**2>
159 ->164	-0.15170	
162 ->163	0.67218	
Excited State	4: Triplet-A	3.1100 eV 398.66 nm f=0.0000 <s**2>=2.000</s**2>
156 ->169	-0.11997	
159 ->164	0.56708	
159 ->167	-0.11066	
160 ->164	0.17439	
162 ->163	0.18329	
Excited State	5: Triplet-A	3.4051 eV 364.11 nm f=0.0000 <s**2>=2.000</s**2>
154 ->163	-0.32617	
155 ->163	0.36144	
156 ->163	0.10184	
157 ->163	-0.20893	
161 ->167	0.11720	
161 ->169	-0.14912	
161 ->170	0.34334	
Excited State	6: Triplet-A	3.4657 eV 357.74 nm f=0.0000 <s**2>=2.000</s**2>
162 ->165	0.65635	

Excited State 157 ->163 158 ->163 160 ->163 160 ->165 161 ->167 161 ->168	7: Triplet-A 0.43634 0.32209 0.33226 0.11115 -0.11208 0.13250	3.5433 eV 349.91 nm f=0.0000 <s**2>=2.000</s**2>
Excited State 157 ->163 158 ->163 160 ->165 162 ->164 162 ->166 162 ->167	8: Triplet-A -0.14414 -0.10299 0.43064 0.30401 -0.30349 0.17510	3.5577 eV 348.49 nm f=0.0000 <s**2>=2.000</s**2>
Excited State 154 ->163 157 ->163 158 ->163 159 ->163 160 ->163	9: Triplet-A 0.11073 -0.23459 -0.11834 0.14785 0.59317	3.6160 eV 342.87 nm f=0.0000 <s**2>=2.000</s**2>
Excited State 157 ->163 159 ->163 161 ->164 161 ->167 161 ->168 162 ->164 162 ->166	10: Triplet-A 0.12246 -0.34278 0.36760 0.23122 -0.20820 -0.28299 -0.12627	3.7883 eV 327.28 nm f=0.0000 <s**2>=2.000</s**2>

Optimized Cartesian coordinates and energies of Crystals:

Table ST10: Optimized Cartesian coordinates:

PhBr

70

Br	3.370270000	5.626642000	0.123198000
С	1.931851000	4.367882000	0.163329000
С	2.058903000	3.204058000	0.916229000
С	0.767480000	4.630461000	-0.557313000

С	1.011238000	2.284068000	0.940570000
Η	2.961412000	3.019609000	1.487546000
Η	0.677085000	5.542973000	-1.135406000
С	-0.271529000	3.707378000	-0.527809000
С	-0.168106000	2.514349000	0.212293000
Η	1.118885000	1.396560000	1.550110000
Η	-1.187081000	3.898301000	-1.075533000
С	-1.336807000	1.618114000	0.202130000
N	-1.326074000	0.238141000	0.407977000
N	-2.557197000	2.064154000	-0.034409000
С	-0.167790000	-0.586941000	0.597244000
С	-2.650076000	-0.190540000	0.275222000
С	-3.374049000	0.967103000	0.012286000
С	0.623135000	-0.926579000	-0.507817000
С	0.157354000	-1.039484000	1.882294000
С	-3.263929000	-1.491292000	0.337112000
С	-4.797025000	0.949829000	-0.171582000
С	1.744220000	-1.723385000	-0.311897000
Н	0.344453000	-0.563175000	-1.492271000
Н	-0.478802000	-0.760850000	2.716196000
С	1.280945000	-1.842667000	2.079016000
С	-4.687751000	-1.532258000	0.150277000
С	-2.561676000	-2.700285000	0.551913000
С	-5.520909000	2.133651000	-0.416660000
С	-5.459963000	-0.306725000	-0.094822000
С	2.073933000	-2.182735000	0.979960000
С	2.750347000	-2.226037000	-1.345451000

Η	1.528164000	-2.193323000	3.076597000
С	-5.316739000	-2.795701000	0.202327000
С	-3.219395000	-3.916029000	0.593912000
Η	-1.489323000	-2.679006000	0.686193000
Η	-4.972443000	3.068318000	-0.465399000
С	-6.892139000	2.093318000	-0.584343000
С	-6.863548000	-0.307578000	-0.269064000
С	3.291226000	-2.997937000	0.887048000
С	3.698940000	-3.034520000	-0.461411000
С	2.071848000	-3.111443000	-2.432548000
С	3.481702000	-1.053271000	-2.063527000
Η	-6.389060000	-2.863676000	0.064211000
С	-4.609412000	-3.964803000	0.419721000
Η	-2.655027000	-4.828733000	0.760613000
Η	-7.447621000	3.007555000	-0.771650000
С	-7.565076000	0.861774000	-0.508123000
Η	-7.418838000	-1.236615000	-0.215493000
С	4.016171000	-3.671109000	1.872424000
С	4.836220000	-3.747571000	-0.826090000
Η	1.406951000	-2.468877000	-3.023877000
Η	2.856026000	-3.448945000	-3.122167000
С	1.287499000	-4.323161000	-1.922235000
Η	4.197192000	-1.492518000	-2.770385000
Η	2.743090000	-0.519388000	-2.675152000
С	4.207905000	-0.055922000	-1.157138000
Η	-5.133056000	-4.915524000	0.451263000
Н	-8.642866000	0.823187000	-0.636362000

С	5.156608000	-4.384193000	1.498675000
Η	3.703148000	-3.643838000	2.912433000
С	5.563763000	-4.422618000	0.160916000
Η	5.162667000	-3.784673000	-1.862039000
Η	1.926016000	-5.003174000	-1.350686000
Η	0.869881000	-4.884874000	-2.763648000
Η	0.454173000	-4.022524000	-1.280098000
Η	3.513642000	0.456754000	-0.484938000
Η	4.706818000	0.708819000	-1.760451000
Η	4.969970000	-0.549192000	-0.546534000
Η	5.732522000	-4.913324000	2.252048000
Н	6.453241000	-4.981588000	-0.114415000

PhPh

70

Ν	-1.166133000	0.704277000	-0.270635000
С	0.223067000	0.434126000	-0.503943000
С	-2.200984000	-0.233378000	-0.205519000
С	-1.755186000	1.955563000	-0.077696000
С	1.017522000	-0.049408000	0.547204000
С	0.767673000	0.654644000	-1.772943000
С	-3.345179000	0.516111000	0.041172000
С	-2.233956000	-1.661220000	-0.382475000
N	-3.058691000	1.852940000	0.108091000
С	-1.068904000	3.260226000	-0.099378000
Η	0.565884000	-0.210877000	1.521628000
С	2.360319000	-0.312284000	0.309683000

Η	0.126849000	1.028644000	-2.564281000
С	2.117496000	0.392335000	-2.011911000
С	-4.631871000	-0.095079000	0.212829000
С	-3.511074000	-2.295417000	-0.208043000
С	-1.115261000	-2.450646000	-0.737828000
С	-1.834431000	4.377755000	-0.483124000
С	0.269198000	3.462593000	0.277556000
С	2.911100000	-0.093361000	-0.971063000
С	3.421185000	-0.831344000	1.280332000
Н	2.535325000	0.564678000	-2.999282000
С	-4.713145000	-1.511806000	0.105978000
С	-5.779575000	0.673970000	0.490754000
С	-3.571344000	-3.697174000	-0.370364000
Η	-0.159311000	-1.975026000	-0.907041000
С	-1.222116000	-3.820620000	-0.893450000
Η	-2.871731000	4.222434000	-0.756625000
С	-1.274569000	5.650827000	-0.504059000
Η	0.876140000	2.630191000	0.608896000
С	0.825348000	4.741382000	0.253638000
С	4.333243000	-0.456314000	-0.933329000
С	4.646912000	-0.892074000	0.369602000
С	3.636046000	0.144664000	2.475772000
С	3.053922000	-2.228757000	1.860071000
С	-5.983720000	-2.102121000	0.299969000
Η	-5.668359000	1.750621000	0.563501000
С	-7.005633000	0.061939000	0.670005000
Η	-4.518306000	-4.208239000	-0.244578000

С	-2.459045000	-4.451394000	-0.699674000
Н	-0.347547000	-4.401536000	-1.171126000
Н	-1.881694000	6.498717000	-0.807758000
С	0.061093000	5.839227000	-0.140330000
Н	1.860481000	4.877382000	0.553320000
С	5.309477000	-0.425459000	-1.931177000
С	5.941389000	-1.298826000	0.675854000
Η	2.707684000	0.169335000	3.060694000
Η	4.395329000	-0.296649000	3.133950000
С	4.051103000	1.573049000	2.113746000
Η	3.867236000	-2.533279000	2.531098000
Η	2.167574000	-2.109044000	2.496238000
С	2.799553000	-3.337701000	0.836042000
Η	-6.100101000	-3.177741000	0.236705000
С	-7.104158000	-1.337004000	0.575398000
Η	-7.888016000	0.657250000	0.885866000
Η	-2.550672000	-5.526930000	-0.817813000
Η	0.499392000	6.832736000	-0.158984000
Η	5.069434000	-0.089777000	-2.936153000
С	6.606326000	-0.835401000	-1.616371000
Η	6.197297000	-1.637268000	1.676480000
С	6.920543000	-1.268799000	-0.324016000
Η	5.006922000	1.590324000	1.582322000
Η	4.160464000	2.176985000	3.019939000
Η	3.306543000	2.061125000	1.477414000
Н	2.579819000	-4.280466000	1.346764000
Н	3.670646000	-3.499547000	0.194385000

Η	1.944895000	-3.103634000	0.194849000
Η	-8.063953000	-1.824686000	0.718988000
Н	7.377575000	-0.818057000	-2.380682000
Η	7.933800000	-1.585114000	-0.094375000

PhNp

76

N	1.106716000	-0.034713000	-0.591800000
С	-0.260065000	-0.456526000	-0.695845000
С	1.557614000	1.286179000	-0.644945000
С	2.232600000	-0.825866000	-0.347777000
С	-1.141304000	-0.204150000	0.363077000
С	-0.699628000	-1.104148000	-1.857415000
Ν	2.861260000	1.364296000	-0.464022000
С	0.674683000	2.442782000	-0.906486000
С	3.291038000	0.072933000	-0.288022000
С	2.405156000	-2.239169000	-0.132436000
Η	-0.774251000	0.301152000	1.251161000
С	-2.465773000	-0.606471000	0.245549000
Η	0.008327000	-1.286834000	-2.659526000
С	-2.026723000	-1.517180000	-1.971899000
С	0.717327000	3.606495000	-0.061332000
С	-0.185904000	2.420413000	-1.992136000
С	4.643041000	-0.355443000	-0.073035000
С	3.751268000	-2.690836000	0.084929000
С	1.348904000	-3.179163000	-0.101992000
С	-2.909569000	-1.265619000	-0.918935000

С	-3.604556000	-0.442946000	1.250361000
Η	-2.360778000	-2.022565000	-2.873213000
С	-0.150830000	4.708460000	-0.367616000
С	1.561754000	3.713977000	1.078316000
Η	-0.202487000	1.552726000	-2.641552000
С	-1.032233000	3.511037000	-2.286799000
С	4.877662000	-1.748186000	0.100715000
С	5.709739000	0.565143000	-0.041860000
С	3.949450000	-4.072917000	0.298532000
Η	0.331409000	-2.843564000	-0.246251000
С	1.589225000	-4.523662000	0.114671000
С	-4.335995000	-1.575729000	-0.762845000
С	-4.757769000	-1.103753000	0.496357000
С	-3.894484000	1.055996000	1.558698000
С	-3.299644000	-1.164973000	2.596141000
С	-1.016063000	4.631354000	-1.490399000
С	-0.132176000	5.860491000	0.464422000
Η	2.236656000	2.899001000	1.306537000
С	1.550416000	4.844319000	1.864831000
Η	-1.687218000	3.459179000	-3.151175000
С	6.217435000	-2.157843000	0.294931000
Η	5.482362000	1.616799000	-0.180588000
С	7.005891000	0.127549000	0.154117000
Η	4.951815000	-4.448311000	0.466010000
С	2.901346000	-4.976024000	0.311759000
Н	0.758980000	-5.223462000	0.133961000
С	-5.230773000	-2.215885000	-1.622629000

С	-6.079009000	-1.272397000	0.897016000
Η	-4.729653000	1.092683000	2.270000000
Η	-3.026171000	1.464612000	2.091217000
С	-4.213517000	1.942073000	0.351577000
Η	-2.461421000	-0.643431000	3.075800000
Η	-4.163787000	-1.017130000	3.256412000
С	-2.982320000	-2.659647000	2.500825000
Η	-1.663244000	5.476267000	-1.710523000
Η	-0.792380000	6.688004000	0.217861000
С	0.698327000	5.930803000	1.557846000
Η	2.205961000	4.903690000	2.728774000
Η	6.452665000	-3.207631000	0.425647000
С	7.258003000	-1.245091000	0.321515000
Η	7.826100000	0.839141000	0.175637000
Η	3.098296000	-6.030349000	0.481367000
С	-6.555283000	-2.381468000	-1.213451000
Η	-4.907460000	-2.580715000	-2.593597000
Η	-6.417849000	-0.912952000	1.865142000
С	-6.976803000	-1.913943000	0.035699000
Η	-4.420275000	2.965561000	0.679834000
Η	-5.093075000	1.580781000	-0.189668000
Η	-3.376165000	1.984545000	-0.350832000
Η	-2.090975000	-2.843694000	1.893600000
Η	-3.812379000	-3.218680000	2.058950000
Η	-2.794745000	-3.071467000	3.497438000
Η	0.703086000	6.816927000	2.185801000
Н	8.274769000	-1.595969000	0.472232000

Η	-7.264269000	-2.877205000	-1.869925000
Η	-8.010434000	-2.049995000	0.340029000

PhAn

82

С	-0.090560000	-0.411945000	0.547574000
N	1.240062000	0.050271000	0.268468000
С	-0.955790000	-0.699760000	-0.516187000
С	-0.509530000	-0.558047000	1.874882000
С	1.585337000	1.372433000	0.001122000
С	2.420712000	-0.688426000	0.180256000
Η	-0.607937000	-0.568244000	-1.535787000
С	-2.241979000	-1.141313000	-0.235047000
Η	0.180283000	-0.317293000	2.676412000
С	-1.798909000	-1.009248000	2.157684000
N	2.871075000	1.512167000	-0.239496000
С	0.579229000	2.466247000	0.001111000
С	3.401061000	0.245909000	-0.131482000
С	2.702648000	-2.090410000	0.335749000
С	-2.663223000	-1.302342000	1.100648000
С	-3.359255000	-1.504679000	-1.210963000
Η	-2.118306000	-1.122922000	3.189321000
С	-0.054783000	2.831109000	-1.206600000
С	0.268282000	3.128855000	1.208395000
С	4.774584000	-0.127952000	-0.307897000
С	1.728063000	-3.068591000	0.639474000
С	4.070606000	-2.488009000	0.160548000

С	-4.050153000	-1.784640000	1.094582000
С	-4.470912000	-1.911521000	-0.244638000
С	-2.952018000	-2.671346000	-2.157737000
С	-3.770359000	-0.286199000	-2.090901000
С	-1.069664000	3.858866000	-1.191638000
С	0.265733000	2.219380000	-2.460725000
С	-0.746325000	4.156707000	1.211971000
С	0.926913000	2.828227000	2.443104000
С	5.112835000	-1.503139000	-0.158936000
С	5.762929000	0.827771000	-0.618214000
Η	0.697307000	-2.769282000	0.775014000
С	2.069200000	-4.402228000	0.771379000
С	4.372515000	-3.860522000	0.304672000
С	-4.911334000	-2.100772000	2.147156000
С	-5.757147000	-2.356311000	-0.531796000
Η	-3.808791000	-2.886231000	-2.809195000
Η	-2.155293000	-2.306631000	-2.818804000
С	-2.495808000	-3.963625000	-1.475217000
Η	-2.916728000	-0.030300000	-2.731223000
Η	-4.569210000	-0.617882000	-2.766861000
С	-4.227904000	0.964381000	-1.335592000
С	-1.722197000	4.206690000	-2.415884000
С	-1.391953000	4.486287000	0.016070000
С	-0.382028000	2.584213000	-3.612080000
Η	1.056078000	1.477018000	-2.491327000
С	-1.064979000	4.811817000	2.442449000
Η	1.718015000	2.086018000	2.444980000

С	0.595600000	3.484270000	3.599405000
С	6.471367000	-1.856099000	-0.333120000
Η	5.457631000	1.863596000	-0.722325000
С	7.080500000	0.444253000	-0.781861000
Η	1.302821000	-5.135100000	1.005780000
С	3.402780000	-4.801626000	0.602467000
Η	5.394107000	-4.198807000	0.178856000
Η	-4.588713000	-2.003484000	3.180027000
С	-6.200770000	-2.546755000	1.850954000
С	-6.621030000	-2.673922000	0.522882000
Η	-6.094795000	-2.458236000	-1.559874000
Η	-1.601148000	-3.802406000	-0.866413000
Η	-2.253134000	-4.723255000	-2.225010000
Η	-3.276443000	-4.371633000	-0.826361000
Η	-5.112908000	0.763458000	-0.724630000
Η	-4.480575000	1.760045000	-2.043227000
Η	-3.442027000	1.347325000	-0.678463000
С	-1.394020000	3.587130000	-3.591565000
Η	-2.485216000	4.980208000	-2.391320000
Η	-2.161274000	5.255027000	0.024298000
Η	-0.115477000	2.114491000	-4.554345000
С	-0.417824000	4.485525000	3.603467000
Η	-1.833167000	5.580521000	2.433275000
Η	1.114929000	3.247308000	4.523324000
С	7.433838000	-0.908532000	-0.637004000
Η	6.783052000	-2.888877000	-0.228964000
Η	7.839641000	1.183436000	-1.020462000

Η	3.678214000	-5.847086000	0.704370000
Η	-6.883170000	-2.797148000	2.657841000
Η	-7.627068000	-3.022290000	0.308125000
Η	-1.895010000	3.862653000	-4.514744000
Η	-0.667082000	4.992541000	4.530805000
Н	8.467759000	-1.216270000	-0.763403000

References:

1. G. He, H. Peng, T. Liu, M. Yang, Y. Zhang and Y. Fang, *J. Mater. Chem.*, 2009, **19**, 7347-7353.

D. Li, J. Liu, R. T. K. Kwok, Z. Liang, B. Z. Tang and J. Yu, *Chem. Commun.*, 2012, 48, 7167-7169.

Y. P. Zhuang, J. Y. Yao, Z. Y. Zhuang, C. J. Ni, H. M. Yao, D. L. Su, J. Zhou and Z. J.
Zhao, *Dyes Pigm.*, 2020, **174**, 108041.

4. Y. J. Li, Y. N. Han, M. H. Chen, Y. Q. Feng and B. Zhang, *RSC Adv.*, 2019, **9**, 30937.

P. Lu, J. W. Y. Lam, J. Liu, C. K. W. Jim, W. Yuan, N. Xie, Y. Zhong, Q. Hu, K. S.
Wong, K. K. L. Cheukand B. Z. Tang, *Macromol. Rapid Commun.*, 2010, **31**, 834-839.

D. B. Wu, W. J. Gong, H. M. Yao, L. M. Huang, Z. H. Lin and Q. D. Ling, *Dyes Pigm.*,
2020, **172**, 107829.

7. S. S. Zhang, H. C. Zhu, J. Y. Huang, L. Kong, Y. P. Tian and J. X. Yang, *Chemistry Select*, 2019, **4**, 7380.

X. Lu, G. C. Zhang, D. D. Li, X. H. Tian, W. Ma, S. L. Li, Q. Zhang, H. P. Zhou, J. Y.
Wu and Y. P, *Dyes Pigm.*, 2019, **170**, 107641.

9. Z. J. Luo, B. Liu, S. F. Si, Y. J. Lin, C. S. Luo, C. J. Pan, C. Zhao and L. Wang, *Dyes Pigm.*, 2017, **143**, 463.

10. M. Gupta and H. Lee, ACS Appl. Mater. Interfaces, 2018, 10, 41717.

X. L. Yu, J. Q. Wan, S. Chen, M. Li, J. K. Gao, L. Yang, H. S. Wang, D. G. Chen, Z.
Q. Pan and J. B. Li, *Talanta*, 2017, **174**, 462.

12. S. Kasthuri, S. Kumar, S. Raviteja, B. Ramakrishna, S. Maji, N. Veeraiah and N. Venkatramaiah, *Appl. Surf. Sci.*, 2019, **481**, 1018.

13. Z.-H. Fu, Y. W. Wang and Y. Peng, *Chem. Commun.*, 2017, **53**, 10524.

14. Si-Hong Chen,a Kai Jiang, Jian-Yun Lin, Kai Yang, Xi-Ying Cao, Xiao-Yan Luo and Zhao-Yang Wang, *J. Mater. Chem. C.*, 2020, **8**, 8257-8267

15. Jin-Feng Xiong, Jian-Xiao Li, Guang-Zhen Mo, Jing-Pei Huo, Jin-Yan Liu, Xiao-Yun Chen, and Zhao-Yang Wang, *J. Org. Chem.* 2014, **79**, 11619–11630.

16. H.-T. Feng and Y.-S. Zheng, *Chem. Eur. J.*, 2013, **20**, 195-201.

 T. Liu, L. Ding, G. He, Y. Yang, W. Wang and Y. Fang, *ACS Appl. Mater. Interfaces*, 2011, 3, 1245-1253.

 A. B. Kajjam, K. Singh, R. V. Varun Tej and S. Vaidyanathan, Mater. Adv., 2021, 2, 5236-5247