Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary materials

High-Efficiency TADF Materials Featuring Carbazole-Modified Spiroacridan-Pyrimidine Skeletons with an External Quantum Efficiency Exceeding 26% in Blue-Green Light Emission

Yi-Zhen Li,¹⁸ Fu-En Szu,¹⁸ Han-Yun Szu,¹ Chao-Che Wu,² Yong-Yun Zhang,¹ Zong-Huan Li,^a Jiun-Haw Lee,^{2*} Tien-Lung Chiu,^{3*} and Man-kit Leung^{1,4*}
¹Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
²Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
³Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan.
⁴Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
⁸ Yi-Zhen Li and Fu-En Szu contributed equally to this work.

Email: jiunhawlee@ntu.edu.tw;tlchiu@saturn.yzu.edu.tw;mkleung@ntu.edu.tw

2-(3,4,5-trifluorophenyl)pyrimidine (1)

The procedure is followed by our previous report.[1] The NMR spectra are also presented in the ESI in the previous report.

A mixture of 2,4,5-trifluorophenylboronic acid (5.842 g, 33.21 mmol), 2bromopyrimidine (3.5 g, 22.14 mmol), Pd(OAc)₂ (0.2485 g, 1.107 mmol) and triphenylphosphine (1.155 g, 4.428 mmol) was flushed with argon then methoxymethane (22 mL) and potassium carbonate solution (21 mL, 2.7 M, 56.7 mmol) were added respectively. The resulting mixture was refluxed at 105°C for 2.5 hours. After the reaction, the solvent was removed by vacuum distillation. The residue was extracted with dichloromethane and water. The organic layer was dried over anhydrous MgSO₄ and removed under reduced pressure. The crude product was purified through column chromatography with dichloromethane and afforded compound **1** as a white solid (3.2970 g, 70% yield). 10-(2,6-difluoro-4-(pyrimidin-2-yl)phenyl)-10H-spiro[acridine-9,9'-fluorene] (2)

A mixture of compound **1** (1.7 g, 5.2 mmol), 10*H*-spiro[acridine-9,9'-fluorene] (1.0 g, 4.8 mmol), and Cs₂CO₃ (2.3 g, 7.1 mmol) in 4.8 mL dimethyl sulfoxide (DMSO) were refluxed at 200°C under argon for 15h. After the reaction, the solvent was removed by vacuum distillation. The residue was dissolved in dichloromethane and extracted by water and saturated NaCl solution. The organic layer was dried by anhydrous MgSO₄. The crude was further purified through chromatography with hexanes/ dichloromethane mixtures 1:2 (v/v) as eluent to afford the purified product (1.6 g, 65%) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.01 (d, *J*= 4.8 Hz, 2 H), 8.38 (d, *J*= 9.2 Hz, 2 H), 7.94 (d, *J*= 7.6 Hz, 2 H), 7.59 (t, *J*= 4.8 Hz, 1 H), 7.38 (t, *J*= 7.6 Hz, 2 H), 7.31 (d, *J*= 7.2 Hz, 2 H), 7.25 (t, *J*= 7.2 Hz, 2 H), 7.01 (t, *J*= 7.2 Hz, 2 H), 6.64 (t, *J*= 7.2 Hz, 2 H), 6.46 (d, *J*= 8.0 Hz, 2 H), 6.26 (d, *J*= 7.6 Hz, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.09, 162.05, 161.86, 160.59, 159.60, 159.55, 158.19, 155.54, 140.83, 138.90, 138.80, 128.60, 128.20, 128.02, 127.40, 125.15, 125.02, 121.78, 121.27, 120.51, 117.99, 117.81, 117.63, 113.35, 112.66, 112.43, 109.49, 56.08; HR-FAB m/z calcd for C₃₅H₂₁F₂N₃ (M⁺) 521.1704, obsd. 521.1710.

S3

Fig. S1. ¹H NMR spectrum of compound (2).

Fig. S2. ¹³C NMR spectrum of compound (2).

Fig. S3. ¹⁹F NMR spectrum of compound (2).

10-(2,6-di(9H-carbazol-9-yl)-4-(pyrimidin-2-yl)phenyl)-10H-spiro[acridine-9,9'fluorene] (**4SpAc35CzPy**)

A mixture of compound **2** (1.00 g, 1.91 mmol), carbazole (0.38 g, 2.29 mmol), and Cs_2CO_3 (0.91 g, 2.8 mmol) in 1.9 mL dimethyl sulfoxide (DMSO) were refluxed at 200°C under argon for 15h. After the reaction, the solvent was removed by vacuum distillation. The residue was dissolved in dichloromethane and extracted by water and saturated NaCl solution. The organic layer was dried by anhydrous MgSO₄. The crude was further purified through chromatography with hexanes/ dichloromethane mixtures 1:2 (v/v) as eluent to afford the purified product (1.1 g, 73%) as a yellow solid.

¹H NMR (400 MHz, DMSO- d_6): δ 9.03 (d, J= 4.8 Hz, 2 H), 9.00 (s, 2 H), 8.09 (d, J= 7.6 Hz, 4 H), 7.66 (d, J= 7.6 Hz, 2 H), 7.61 (t, J= 4.8 Hz, 1 H), 7.51 (d, J= 8.2 Hz, 4 H), 7.22 (d, J= 7.2 Hz, 4 H), 7.13 (t, J= 8.2 Hz, 6 H), 7.05 (d, J= 8.2 Hz, 2 H), 6.78 (t, J= 7.6 Hz, 2 H), 6.36 (t, J= 7.8 Hz, 2 H), 6.11 (t, J= 7.6 Hz, 2 H), 5.45 (dd, J= 8.2, 1.5 Hz, 2 H), 5.07 (d, J= 7.6 Hz, 2 H); ¹³C NMR (100 MHz, Chloroform- d_I): δ 162.59, 158.66, 157.59, 140.53, 139.66, 139.23, 138.59, 137.00, 135.81, 130.85, 128.67, 128.07, 126.68, 126.15, 125.53, 125.27, 123.58, 123.13, 120.99, 120.13, 120.01, 119.95, 119.03, 115.47, 110.74, 54.89; HR-FAB m/z calcd for C₅₉H₃₇N₅ (M+) 815.3049 obsd. 815.3050.

[在此鍵入]

Fig. S4. ¹H NMR spectrum of 4SpAc35CzPy.

Fig. S5. ¹³C NMR spectrum of 4SpAc35CzPy.

Fig. S6. Thermal gravity analysis (TGA) curves of 4SpAc35CzPy and 4Ac35CzPy.

Fig. S7. Differential scanning calorimetry (DSC) curves of 4SpAc35CzPy.

Fig. S8. Cyclic voltammogram (CV) and differential pulse voltammetry (DPV) of

4SpAc35CzPy (a) oxidation and (b) reduction.

Fig. S9. PLQY of 4SpAc35CzPy in (a) pristine thin film and (b) doped in *o*-DiCbzBz

(15%).

Fig. S10. Photoelectron spectrum of 4SpAc35CzPy.

Fig. S11. The EL spectrum at (a) 4 V, (b) 9.5 V, and (c) CIE coordinates in various dopant concentrations.

HTL TAPC	EBL mCP	EML o-DiCbzBz/ X% 4SpAc35CzPy	ETL DPPS	cathode LiF/Al
		30 /3%		
		30 /10%		
		30 /15%	55	
		30 /20%		
		30 /25%		
50	10		50	1.0/120
		30 /15%	55	_
			60	_
	-	25 /15%		_
	-	30 /15%	. 60	
	-	35 /15%		
$\begin{array}{c} 80 \\ 70 \\ - 3\% \\ - 10\% \\ - 15\% \\ - 20\% \\ - 25\% \\ - 25\% \\ - 25\% \\ - 25\% \\ - 25\% \\ - 20\% \\ - 25\% \\ - 20\% \\ - 25\% \\ - 20\% \\ - 25\% \\ - 20\% \\ - 25\% \\ - 20\% \\ - 25\% \\ - 20\% \\ - 25\% \\ - 20\% $	4 6 Voltage (V)	$\begin{array}{c} (0) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	0.01 0.1 1 Current density (mA/	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
(C) 60 ETL 50 50 55 nm 55 nm 55 nm 50 60 nm	and the second se	(d)		ETL 55 55

 Table S1. The device structure of OLEDs while 4SpAc35CzPy with different dopant concentration, ETL, and EML thickness.

Figure S12. Device performance for OLEDs (a), (c), (e) J-L-V characteristics and (b), (d), (f) Efficiency-J-EQE. while 4SpAc35CzPy with different dopant concentrations, ETL, and EML thickness, respectively.

 Table S2. Device performance for OLEDs while 4SpAc35CzPy with different dopant concentration, ETL, and EML thickness, respectively.

Device	V _{on} ^a (V)	CE ^b (cd/A)	PE ^b (lm/W)	EQE ^b (%)	L (nits)	CIE ^c (x, y)
3%	3.37	36.88	33.18	20.18	1677	(0.165,0.274)
10%	3.40	54.52	49.05	24.93	<mark>2327</mark>	(0.170,0.327)
15%	3.33	59.16	53.24	26.25	<mark>2851</mark>	(0.179,0.365)
20%	3.32	58.65	52.73	22.36	<mark>3366</mark>	(0.183,0.383)
25%	3.50	57.25	51.51	22.97	<mark>3156</mark>	(0.200,0.426)
ETL 50	3.37	58.86	52.93	25.69	<mark>3262</mark>	(0.178,0.366)
ETL 55	3.33	59.16	53.24	26.25	<mark>2678</mark>	(0.179,0.365)
ETL 60	3.43	55.69	50.09	26.72	<mark>2627</mark>	(0.195,0.396)
EML 25	3.40	55.88	50.26	25.32	<mark>2755</mark>	(0.187,0.380)
EML 30	3.43	55.69	50.09	26.72	<mark>2627</mark>	(0.195,0.396)
EML 35	3.47	53.98	48.56	25.36	<mark>2220</mark>	(0.206,0.408)

^a measured at 1 cd/m²; ^b measured at maximum; ^c measured at 9.5 V.

Device	J=1 (mA/cm ²)#LT50		
50 nm	32 (min) @362 nits		
55 nm	36 (min) @333 nits		
60 nm	40 (min) @368 nits		

Table S3. The device lifetime of 4SpAc35CzPy with different EML thickness.

Figure S13. The lifetime curves for 4SpAc35CzPy with different EML thicknesses.

Figure S14. Natural Transition Orbitals (NTOs) of the Singlet excited states of 4Ac35CzPy.

Figure S15. Natural Transition Orbitals (NTOs) of the Triplet excited states of 4Ac35CzPy.

Figure S16. Natural Transition Orbitals (NTOs) of the Singlet excited states of 4SpAc35CzPy.

Figure S17. Natural Transition Orbitals (NTOs) of the Triplet excited states of 4SpAc35CzPy.

4Ac35CzPy							
$< S_n \hat{H}_{soc} T_n >$	\mathbf{S}_0	S_1	S_2	S_3	S_4		
T_1	0.74	0.40	1.20	0.25	0.27		
T_2	3.65	0.52	0.13	1.03	0.56		
T ₃	1.14	0.70	0.05	0.28	0.35		
T_4	1.89	0.24	0.05	0.47	0.53		
T ₅	2.19	0.58	0.11	0.50	0.16		
T ₆	1.33	1.10	0.10	0.29	0.20		
T ₇	0.43	0.82	0.13	0.04	0.09		
T ₈	0.30	0.24	0.10	0.29	0.20		
T9	0.73	0.08	0.08	0.23	0.28		
T ₁₀	1.10	0.29	0.13	1.38	0.39		

Table S4. Spin-orbital Coupling (SOC) matrix constants (cm⁻¹) of 4Ac35CzPy.

4SpAc35CzPy						
$$	S_0	S_1	S_2	S ₃	S_4	
T_1	0.89	0.43	0.48	0.25	1.13	
T_2	0.21	0.01	0.00	0.00	0.01	
T ₃	0.51	0.27	0.15	0.33	0.02	
T_4	1.71	0.39	0.16	0.90	0.09	
T ₅	3.04	0.36	0.99	0.06	0.27	
T_6	2.88	0.38	0.73	0.17	0.26	
T ₇	0.57	1.03	0.07	0.11	0.20	
T_8	0.53	0.97	0.07	0.16	0.19	
T9	0.56	0.70	0.15	0.18	0.10	
T ₁₀	0.69	0.30	0.29	0.38	0.05	

Table S5. Spin-orbital Coupling (SOC) matrix constants (cm⁻¹) of 4SpAc35CzPy.

Table S6. Summary of reported sky-blue OLED materials and their device performance parameters.

performance parameters.							
Name	η_{EQE}	η_{CE}	η_{PE}	CIE	Year		
4SpAc35CzPy	25.7	58.7	52.9	(0.18,0.37)	2025		
4SpAc35CzPy (3%)	20.2	36.9	33.2	(0.17,0.27)	2025		
SpiroAC-TRZ	36.7	94	98.4	(0.18,0.43)	2016		
MFAcPM	17.1	34.3	31.7	(0.16,0.21)	2017		
Ac-PM	11.4	18.9	16.5	(0.15,0.15)	2017		
2NPMAF	23.6	50.6	56.7	(0.19,0.34)	2018		
3NPMAF	24.9	60.7	68.2	(0.20,0.40)	2018		
25tCzBPym	23.3	65.5	51.1	(0.20,0.47)	2021		
DPS-SAIA	19.3	30.4	18.1	(0.15,0.20)	2022		
Me-DPS-SAIA	17.1	27.0	13.8	(0.14,0.16)	2022		
CzmPPC	16.1	36.8	38.5	(0.16,0.27)	2022		
p,m-SPAc-PPM	25.1	58.2	50.7	(0.20,0.36)	2022		
4Ac35CzPy	21.2	53.3	48.1	(0.19,0.40)	2023		
2,7-CF3-Ph- DMAC-TRZ	22.5	55.1	55.8	(0.22,0.41)	2024		
PCzoTrz	24.6	53.5		(0.16,0.36)	2024		
HCB-1	21.0	48.1	30.2	(0.18,0.36)	2025		

Reference:

[1] Y.-Z. Li, H.-C. Liang, C.-H. Chen, C.-H. Chiu, B.-Y. Lin, J.A. Tan, J.-H. Lee, T.-L. Chiu, M.-k. Leung, Modification of thermally activated delayed fluorescence emitters comprising acridan–pyrimidine moieties for efficient sky-blue to greenish-blue OLEDs, J. Mater. Chem. C 11(41) (2023) 14395-14403.