# **Supporting Information**

### S1. Materials and general methods

THF, ether, toluene and dichloromethane were dewatered and deoxygenated with a Solvent Purification System (FL-MD-5), and stored under nitrogen prior to use. All chemicals from commercial sources were used as received unless otherwise stated. 1-Bromo-4-fluoro-2-iodobenzene, 3,6-di-tert-butyl-9Hcarbazole, 2-Bromobenzaldehyde were purchased from Bide PharmatechLtd. (Shanghai, China). Isopropylmagnesium chloride lithium chloride complex (1.3M in THF). 2.6-Bis(trifluoromethyl)bromobenzene were purchased from Energy Chemical (Shanghai, China). Hydriodic acid, n-BuLi (1.6M in Hexane) and BCl<sub>3</sub> (1 M in dichloromethane) were purchased from J&K Scientific (Beijing, China). Acetic Acid was purchased from Shanghai Titan Scientific Co., Ltd. 1,3,5-Tri-tertbutylbenzene was purchased from 9Ding Chemistry (Shanghai, China). Dimethyltin dichloride were TCI(Shanghai)Development purchased from Co., Ltd. N, Ν -Dimethylformamide, Petroleumeter, ethyl acetate, dichloromethane, tetrahydrofuran and hexane were purchased from Sinopharm Chemical Reagent Co., Ltd.

<sup>1</sup>H NMR (400 MHz), <sup>13</sup>C NMR (101 MHz, 176 MHz) and <sup>11</sup>B NMR (128 MHz, 225 MHz) spectra were recorded on Bruker Avance 400 MHz and 700 MHz spectrometer, respectively. 1H NMR chemical shifts were referenced to residual CDCl<sub>3</sub> (7.26 ppm) and THF-d<sub>8</sub> (1.72, 3.58 ppm). <sup>13</sup>C NMR (proton decoupled) chemical shifts were referenced to CDCl<sub>3</sub> (77.16 ppm) and THF-d<sub>8</sub> (25.31, 67.21 ppm). For <sup>11</sup>B NMR spectra, boron-free quartz NMR tubes were used and the spectra were referenced to external BF<sub>3</sub>·Et<sub>2</sub>O ( $\delta = 0$ ). High resolution mass spectral data were obtained on an Agilent (Q-TOF 6520) mass spectrometer and MALDI-MS measurements were performed on a Bruker AutoFlex MAX in linear (+) mode.

UV-vis absorption spectra were recorded on a JASCO V-770 UV-vis-NIR spectrophotometer. The fluorescence spectra (including temperature-dependent emission spectra) and transient decay curves were measured on an Edinburgh Instruments FLS980 spectrophotometer. The phosphorescence spectra were also recorded on Edinburgh Instruments FLS980 spectrophotometer with delay of 0.1ms. Fluorescent quantum efficiencies were determined using a Hamamatsu Quantaurus-QY spectrometer(C11347-11). Cyclic voltammetry (CV) was recorded at room temperature on an AUTOLAB-CV-75W voltammetric analyzer with ferrocene as the internal standard and tetrabutyl ammonium hexafluorophosphate (0.1 M) in deaerated DCM or THF as the supporting electrolyte solvent. The cyclic voltammograms were obtained at scan rate of 0.1 V s<sup>-1</sup>.

DFT calculations were performed with the Gaussian 16 program package.<sup>[1]</sup> Geometry optimizations and single point energies were conducted at the B3LYP-D3/6-311G\* level of theory, and all optimized structures indicated no imaginary frequency. Vertical transitions and excited states were calculated using TD-DFT (PBE0/ def2-TZVP). Electron-hole analysis is conducted using multiwfn software. <sup>[2]</sup>

### **S2.** Experimental section





### Synthesis of 5-(2,6-bis(trifluoromethyl)phenyl)-5,10-dihydrodibenzo[*b,e*]borinine(<sup>F</sup>XylB-A)

To a stirring solution of 1 (1.98 g, 6.27 mmol) in dichloromethane at -78 °C was added BCl<sub>3</sub> (1 M; 9.4 mL, 9.40 mmol) dropwise. The reaction mixture was allowed to slowly come to room temperature. The volatile compounds were removed under dynamic vacuum. The resultant off white solid was transferred to a sublimation vessel and the residual Me<sub>2</sub>SnCl<sub>2</sub> was removed at ambient temperature under dynamic vacuum, leaving a grey solid 2 (1.2 g, 90%). The product is extremely sensitive toward oxygen and water that should be handled accordingly. 2-bromo-1,3-bis(trifluoromethyl)benzene (2.75 g, 9.40 mmol) was charged into a flame-dried Schlenk flask under nitrogen atmosphere and 60 mL of dry ether were added. The flask was cooled to -78 °C and was added n-BuLi (1.6 M; 6.5 mL, 10.34 mmol) dropwise. The mixture was stirred for 0.5 h at -78 °C, then warmed to room temperature and stirred for 4 h. The solvent was removed under high vacuum to obtain the lithium salt of 2-bromo-1,3-bis(trifluoromethyl)benzene (FXylLi) as light yellow solid. The FXylLi was redissolved in 30 mL of dry toluene and the mixture was cooled to -78 °C. A solution of 2 (1.2 g, 5.65 mmol) in 20 mL dry toluene was added to the above solution, then the mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by adding 40 mL of water. The aqueous layer was separated and extracted with dichloromethane ( $3 \times 10$  mL). The combined organic layers were washed with brine (30 mL), dried with Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel using petroleum ether as an eluent to give FXyIB-A as a light yellow solid (1.6 g, 64%).

### Synthesis of 5-(2,6-bis(trifluoromethyl)phenyl)dibenzo[b,e]borinin-10(5H)-one(FXylB-AQ)

To a solution of **FXyIB-A** (1.63 g, 4.10mmol) in acetic acid (80 mL) was added chromium (VI) oxide (1.07 g, 10.66mmol). The mixture was refluxed with stirring for 12 h. After addition of water, the mixture was extracted with dichloromethane three times. The combined organic extract was washed with a saturated aqueous solution of NaHCO<sub>3</sub> and dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether / dichloromethane (1:1) as an eluent to give **FXyIB-AQ** as pale yellow solid (1.2 g, 71%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.41 (d, *J* = 8.0 Hz, 2H), 7.98 (d, *J* = 8.0 Hz, 2H), 7.79 (t, *J* = 8.0 Hz, 1H), 7.72 (t, *J* = 8.0 Hz, 2H), 7.56 (t, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 188.16, 138.42, 136.87, 134.37, 133.76, 133.29 (q, *J* = 32.3 Hz), 133.19, 129.44, 129.40, 129.35, 128.20, 124.29 (q, *J* = 275.7 Hz).

### <sup>11</sup>B NMR (225 MHz, CDCl<sub>3</sub>) δ 61.6.

HR-ESIMS (m/z): [M+H] + calcd. for C<sub>21</sub>H<sub>11</sub>BF<sub>6</sub>O, 405.0880; found: 405.0883.



Scheme S2. Synthetic route of <sup>F</sup>XylB-<sup>F</sup>AQ.

# Synthesisof2-(trifluoromethyl)-5-(2,6-bis(trifluoromethyl)phenyl)-5,10-

### dihydrodibenzo[b,e]borinine(FXylB-FA)

To a stirring solution of 3 (2.91 g, 7.60 mmol) in dichloromethane at -78 °C was added BCl<sub>3</sub> (1 M; 11.4 mL, 11.4mmol) dropwise. The reaction mixture was allowed to slowly come to room temperature. The volatile compounds were removed under dynamic vacuum. The resultant off white solid was transferred to a sublimation vessel and the residual Me<sub>2</sub>SnCl<sub>2</sub> was removed at ambient temperature under dynamic vacuum, leaving a grey solid 4 (1.8 g, 85%). The product is extremely sensitive toward oxygen and water that should be handled accordingly. 2-bromo-1,3-bis(trifluoromethyl)benzene (3.34 g, 11.4 mmol) was charged into a flame-dried Schlenk flask under nitrogen atmosphere and 120 mL of dry ether were added. The flask was cooled to -78 °C and was added n-BuLi (2.5 M; 5.02 mL, 12.54 mmol) dropwise. The mixture was stirred for 0.5 h at -78 °C, then warmed to room temperature and stirred for 4 h. The solvent was removed under high vacuum to obtain the lithium salt of 2-bromo-1,3-bis(trifluoromethyl)benzene (FXylLi) as light yellow solid. The FXylLi was re-dissolved in 30 mL of dry toluene and the mixture was cooled to -78 °C. A solution of 4 (1.8 g, 6.42 mmol) in 20 mL dry toluene was added to the above solution, then the mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by adding 30 mL of water. The aqueous layer was separated and extracted with dichloromethane ( $3 \times 10$  mL). The combined organic layers were washed with brine (30 mL), dried with Na<sub>2</sub>SO<sub>4</sub> and the solvent was removed in vacuo. The crude product was purified by column chromatography on silica gel using petroleum ether as an eluent to give FXyIB-FA as a light yellow solid (2.1 g, 60%).

## Synthesis of 5-(2,6-bis(trifluoromethyl)phenyl)-2-(trifluoromethyl)dibenzo [b,e]borinin-10(5H)one (<sup>F</sup>XylB-<sup>F</sup>AQ)

To a solution of <sup>F</sup>XylB-<sup>F</sup>A (2.1 g, 5.38 mmol) in acetic acid (120 mL) was added chromium (VI) oxide (1.4g, 14.00mmol). The mixture was refluxed with stirring for 12 h. After addition of water, the mixture was extracted with dichloromethane three times. The combined organic extract was washed with a saturated aqueous solution of NaHCO<sub>3</sub> and dried over Na<sub>2</sub>SO<sub>4</sub>. After filtration, the mixture was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel using petroleum ether / dichloromethane (1:1) as an eluent to give <sup>F</sup>XylB-<sup>F</sup>AQ as pale yellow solid (1.7 g, 71%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.68 (d, *J* = 1.8 Hz, 1H), 8.45 (dd, *J* = 7.8, 1.1 Hz, 1H), 8.01 (d, *J* = 7.9 Hz, 2H), 7.87 – 7.82 (m, 1H), 7.82 – 7.74 (m, 2H), 7.61 (td, *J* = 7.4, 1.2 Hz, 1H), 7.44 (d, J = 7.7 Hz, 1H), 7.34 (dd, *J* = 7.4, 1.3 Hz, 1H).

<sup>13</sup>C NMR (101 MHz, CDCl3) δ 186.62, 138.71, 137.92, 137.16, 136.92, 135.63, 135.44, 134.83, 133.51, 133.22, 133.04, 132.86, 129.67, 129.44, 129.17, 128.40, 126.64, 124.96, 124.24, 123.52, 122.69, 121,96.

<sup>11</sup>B NMR (225 MHz, CDCl3) δ 62.5.

HR-ESIMS (m/z):  $[M + H]^+$  calcd. for C<sub>22</sub>H<sub>10</sub>BF<sub>9</sub>O, 473.0681; found: 473.0731. Synthesis of 9-(2-bromophenyl)-3,6-di-tert-butyl-9H-carbazole (PCZ-Br)



Scheme S3 Synthetic route of PCZ-Br.

A mixture of 3,6-Di-*tert*-butyl-9*H*-carbazole (1 g, 3.58 mmol), 1-bromo-2-fluorobenzene (2.5 g, 14.32mmol) and KOH (2 g, 35.8 mmol) in 60 mL DMF was stirred at 150 °C for 12 h. After cooling to room temperature, the mixture was quenched with saturated saline, and extracted with ethyl acetate three times. Combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvents, the residue was purified by silica gel column chromatography (eluent: petroleum ether/dichloromethane = 40/1) to obtain the title compound **PCZ-Br** (0.7g, yield = 45%) as a white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.14 (d, *J* = 2.0 Hz, 2H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.46 – 7.41 (m, 3H), 7.38 (td, *J* = 7.7, 1.9 Hz, 2H), 6.98 (d, *J* = 8.5 Hz, 2H), 1.46 (s, 18H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 142.80, 139.39, 137.33, 134.16, 131.05, 129.83, 128.71, 123.73, 123,63, 123.23, 116.33, 109.50, 34.74, 32.09.

HR-ESIMS (m/z): [M+H] + calcd. for C<sub>26</sub>H<sub>28</sub>BrN, 436.1485; found: 436.1419.

Synthesis of 10-(2-bromophenyl)-9,9-dimethyl-9,10-dihydroacridine (PBA-Br)



# Scheme S4 Synthetic route of PBA-Br.

A mixture of 9,9-dimethyl-9,10-dihydroacridine (2 g, 9.56 mmol), 1-bromo-2-iodobenzene (5.41 g, 19.11 mmol), tris(dibenzylideneacetone)dipalladium (0)  $[Pd_2(dba)_3, 0.44 g, 0.48 mmol]$ , tri-tertbutylphosphine (0.17 g, 0.86 mmol), sodium tert-butoxide (NaO-tBu, 1.84 g, 19.12 mmol) in dry toluene (50 mL) was stirred at 100 °C for 24 h. After the mixture had been cooled to room temperature, water (100 mL) was slowly added and a turbid mixture was extracted with ethyl acetate three times. Combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. After removal of the solvents, the residue was purified by silica gel column chromatography (eluent: pure petroleum ether) to obtain the title compound **PBA-Br** (1.6g, yield = 44%) as a white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.87 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.57 (dtd, *J* = 15.3, 7.6, 1.5 Hz, 1H), 7.48

(ddd, *J* = 7.4, 3.0, 1.8 Hz, 2H), 7.42 – 7.30 (m, 2H), 7.03 – 6.89 (m, 4H), 6.09 (ddd, *J* = 20.5, 7.6, 1.5 Hz, 2H), 1.77 (s, 3H), 1.67 (d, *J* = 1.5 Hz, 3H).

<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.27, 141.41, 139.70, 139.21, 139.06, 135.01, 133.54, 132.80, 130.82, 129.85, 126.56, 125.91, 125.70, 120.88, 113.49, 113.34, 35.98, 33.27, 31.11.

HR-ESIMS (m/z):  $[M + H]^+$  calcd. for  $C_{19}H_{14}BrN,338.0289$ ; found:338.3394.

Synthesis of 3',6'-di-tert-butyl-5-(2,4,6-tri-tert-butylphenyl)-5H-spiro[dibenzo[*b,e*]borinine-10,8'indolo[3,2,1-de]acridine](PCZ-s-Mes\*B)



To a stirring solution of 9-(2-bromophenyl)-3,6-di-tert-butyl-9H-carbazole (0.20 g, 0.46 mmol) in THF at -78°C was added *n*-BuLi (1.6 M; 0.32 mL, 0.51 mmol) dropwise and the reaction mixture was stirred for 1.5 h at the same temperature. Then, **Mes\*B-AQ** (0.25 g, 0.58 mmol) in THF (5 mL) was added dropwise at -78°C. After complete addition, the mixture was allowed to warm to room temperature overnight. After completion, the reaction was quenched with 5 mL water. The aqueous layer was separated and extracted with  $CH_2Cl_2$  (3 ×20 mL). The combined organic layers were washed with brine, dried with  $Na_2SO_4$  and concentrated *in vacuo* and the product was dissolved in 12 mL glacial acetic acid. The solution was heated to reflux added with 0.5 mL of concentrated hydrochloric acid and stirred for 6h. After cooling to room temperature, the mixture was poured into 100 mL ice water, and collected by filtration. The resulting precipitate was further purified via column chromatography with petroleum ether / dichloromethane (5:1) as eluents to afford a white solid (0.14 g, 39%).

<sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 8.15(dd, *J*=5.4 Hz, 2H), 8.12(d, *J*=2.5 Hz, 1H), 7.85(d, *J*=1.6 Hz, 1H), 7.63(d, *J*=2.1 Hz, 1H), 7.62-7.57(m, 2H), 7.50(s, 1H), 7,24-7.18(m, 1H), 7.15-7.04(m, 6H), 6.69(t, *J*=2.1 Hz, 1H), 6.66-6.58(m, 2H), 1.44(s, 10H), 1.37(s, 9H), 1.21(d, *J*=2.7 Hz, 18H), 1.09(s, 9H).

<sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 155.94, 152.48, 152.38, 148.32, 145.85, 143.88, 137.92, 137.22, 136.69, 135.97, 135.62, 134.12, 133.76, 132.42, 132.40, 131.93, 130.28, 127.14, 126.45, 125.78, 124.05, 123.94, 122.72, 122.69, 122.61, 122.16, 117.23, 114.06, 113.78, 113.07, 53.64, 38.62, 38.58, 35.51, 35.37, 35.03, 34.77, 34.73, 31.93, 31.90, 31.48.

HR-ESIMS (m/z): [M+H] + calcd. for C<sub>57</sub>H<sub>64</sub>BN, 774.5132; found: 774.5225.

Synthesis of 5-(2,6-bis(trifluoromethyl)phenyl)-3',6'-di-tert-butyl-5H-spiro[dibenzo[*b,e*]borinine-10,8'-indolo[3,2,1-de]acridine]( PCZ-s-<sup>F</sup>XylB)



To a stirring solution of 9-(2-bromophenyl)-3,6-di-*tert*-butyl-9H-carbazole (0.20 g, 0.46 mmol) in THF at -78°C was added *n*-BuLi (1.6 M; 0.32 mL, 0.51 mmol) dropwise and the reaction mixture was stirred for 1.5 h at the same temperature. Then, **FXylB-AQ** (0.23 g, 0.58 mmol) in THF (5 mL) was added dropwise at -78°C. After complete addition, the mixture was allowed to warm to room temperature overnight. After completion, the reaction was quenched with 5 mL water. The aqueous layer was separated and extracted with  $CH_2Cl_2$  (3 ×20 mL). The combined organic layers were washed with brine, dried with  $Na_2SO_4$  and concentrated in vacuo and the product was dissolved in 12 mL glacial acetic acid. The solution was heated to reflux added with 0.5 mL of concentrated hydrochloric acid and stirred for 6h. After cooling to room temperature, the mixture was poured into 100 mL ice water, and collected by filtration. The resulting precipitate was further purified via column chromatography with petroleum ether / dichloromethane (5:1) as eluents to afford a white solid (0.13 g, 38%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.22(s, 1H), 8.20 (d, *J* = 1.9 Hz, 2H), 8.05 (dd, *J* = 8.0, 3.1 Hz, 2H), 7.84 (d, *J* = 1.7 Hz, 1H), 7.80 (t, *J* = 7.9 Hz, 1H), 7.67 (dd, *J* = 8.8, 2.1 Hz, 1H), 7.33 (d, *J* = 1.9 Hz, 1H), 7.32 - 7.28 (m, 2H), 7.27 (dd, *J* = 3.8, 1.6 Hz, 1H), 7.23 (d, *J* = 1.6 Hz, 1H), 7.14 - 7.08 (m, 4H), 6.82 (dd, *J* = 7.6, 7.2, 1.1 Hz, 1H), 6.75 - 6.54 (m, 2H), 1.52 (s, 9H), 1.15 (s, 9H).

<sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 158.58, 146.02, 143.81, 136.77, 136.22, 136.03, 134.12, 133,95, 133.49 (d, *J* = 13.9 Hz), 133.18 (t, *J* = 6.8 Hz), 132.85, 132.52, 132.07, 129.16, 128.57, 127.92, 127.30, 126.32, 126.04 (d, *J* = 4.6 Hz), 125.60, 124.13, 123.73, 123.33, 123.10, 122.31, 117.24, 114.21, 113.59, 112.77, 53.36, 34.84, 34.76, 31.94, 31.59.

<sup>11</sup>B NMR (225MHz, CDCl<sub>3</sub>) δ 59.32.

HR-ESIMS (m/z): [M+H] + calcd. for C<sub>47</sub>H<sub>38</sub>BF<sub>6</sub>N, 742.3001; found: 742.3054.

Synthesis of 9',9'-dimethyl-5-(2,4,6-tri-tert-butylphenyl)-5H,9'H-spiro[dibenzo[*b,e*]borinine-10,5'quinolino[3,2,1-de]acridine]( PBA-s-Mes\*B)



To a stirring solution of 10-(2-bromophenyl)-9,9-dimethyl-9,10-dihydroacridine (0.20 g, 0.55 mmol) in THF at -78°C was added *n*-BuLi (1.6 M; 0.38 mL, 0.61 mmol) dropwise and the reaction mixture was stirred for 1.5 h at the same temperature. Then, **Mes\*B-AQ** (0.29 g, 0.66 mmol) in THF (5 mL) was added dropwise at -78°C. After complete addition, the mixture was allowed to warm to room temperature overnight. After completion, the reaction was quenched with 5 mL water. The aqueous layer was separated and extracted with  $CH_2Cl_2$  (3 ×20 mL). The combined organic layers were washed with brine, dried with  $Na_2SO_4$  and concentrated *in vacuo* and the product was dissolved in 12 mL glacial acetic acid. The solution was heated to reflux added with 0.5 mL of concentrated hydrochloric acid and stirred for 6h. After cooling to room temperature, the mixture was poured into 100 mL ice water, and collected by filtration. The resulting precipitate was further purified via column chromatography with petroleum ether

/ dichloromethane (5:1) as eluents to afford a white solid (0.14 g, 36%).

<sup>1</sup>H NMR (400 MHz, THF-d<sub>8</sub>)  $\delta$  7.63 (ddd, J = 11.4, 7.8, 1.4 Hz,2H), 7.49 (td, J = 5.4, 4.9, 1.6 Hz, 4H), 7.46 – 7.38 (m, 1H), 7.32 – 7.25 (m, 1H), 7.24 – 7.17 (m, 1H), 7.17 – 7.11 (m, 3H), 7.06 (td, J = 7.5, 1.2 Hz, 1H), 7.02 – 6.93 (m, 2H), 6.93 – 6.83 (m, 2H), 6.67 – 6.55 (m, 2H), 6.47 (dd, J = 8.0, 1.5 Hz, 1H), 6.29 (dd, J = 7.9, 1.3 Hz, 1H), 1.85 (s, 3H), 1.33 (s, 9H), 1.31 (s, 3H), 1.18 (s, 9H), 1.11 (s, 9H).

<sup>13</sup>C NMR (176 MHz, THF-d<sub>8</sub>) δ 156.25, 154.37, 152.25 (d, *J* = 15.0 Hz), 148.25, 140.64, 139.67, 137.57, 137.42, 137.01, 136.82, 136.31, 136.24, 135.32, 135.02, 134.16, 133.99, 133.75, 132.84, 131.81, 131.15, 129.07, 127.83, 126.33, 126.09, 125.93, 125.57, 123.99, 123.14, 122.77, 122.61, 122.55, 122.53, 121.25, 119.02, 116.19, 53.37, 38.35, 38.34, 36.87, 34.83, 34.74, 34.39, 30.83, 29,96, 22.44.

<sup>11</sup>B NMR (225MHz, THF-d<sub>8</sub>) δ 62.11.

HR-ESIMS (m/z): [M+H] + calcd. for C<sub>52</sub>H<sub>54</sub>BN, 704.4349; found: 704.4455.

Synthesis of 5-(2,6-bis(trifluoromethyl)phenyl)-9',9'-dimethyl-5H,9'H-spiro[dibenzo[*b,e*]borinine-10,5'-quinolino[3,2,1-de]acridine]( PBA-s-<sup>F</sup>XylB)



To a stirring solution of 10-(2-bromophenyl)-9,9-dimethyl-9,10-dihydroacridine (0.20 g, 0.55 mmol) in THF at -78°C was added *n*-BuLi (1.6 M; 0.38 mL, 0.61 mmol) dropwise and the reaction mixture was stirred for 1.5 h at the same temperature. Then, **FXylB-AQ** (0.27 g, 0.66 mmol) in THF (5 mL) was added dropwise at -78°C. After complete addition, the mixture was allowed to warm to room temperature overnight. After completion, the reaction was quenched with 5 mL water. The aqueous layer was separated and extracted with  $CH_2Cl_2$  (3 ×20 mL). The combined organic layers were washed with brine, dried with  $Na_2SO_4$  and concentrated *in vacuo* and the product was dissolved in 12 mL glacial acetic acid. The solution was heated to reflux added with 0.5 mL of concentrated hydrochloric acid and stirred for 6h. After cooling to room temperature, the mixture was poured into 100 mL ice water, and collected by filtration. The resulting precipitate was further purified via column chromatography with petroleum ether / dichloromethane (5:1) as eluents to afford a yellow solid (0.15 g, 41%).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  8.30 (dd, J = 8.0, 3.0 Hz, 2H), 8.04 (t, J = 8.0 Hz, 1H), 7.66 – 7.56 (m, 3H), 7.51 (ddd, J = 8.4, 5.2, 3.6 Hz, 1H), 7.35 (td, J = 7.8, 1.5 Hz, 1H), 7.32 – 7.28 (m, 2H), 7.28 – 7.16 (m, 6H), 7.12 (td, J = 7.5, 7.1, 1.4 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.85 (q, J = 7.1, 6.6 Hz, 2H), 6.41 (dd, J = 7.9, 1.4 Hz, 1H), 6.23 (dd, J = 7.8, 1.2 Hz, 1H), 1.94 (s, 3H), 1.39 (s, 3H).

<sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 158.60, 157.35, 140.03, 137.25, 136.98, 136.43, 135.69, 135.63, 135.17, 134.65, 134.11, 133.74, 133.57, 133.45, 133.34, 133.28, 133.17, 132.95, 131.28, 129.46, 129.17, 128.57, 128.00, 126.37, 126.24, 125.73, 125.71, 125.40, 124.09, 123.84, 123.20, 123.18, 123.00, 121.31, 119.33, 116.48, 53.18, 37.13, 30.09, 23.14.

### <sup>11</sup>B NMR (225 MHz, CDCl<sub>3</sub>) δ 59.09.

HR-ESIMS (m/z): [M+H] + calcd. for C<sub>42</sub>H<sub>28</sub>BF<sub>6</sub>N, 672.2219; found: 672.2304.

Synthesis of (S)-5-(2,6-bis(trifluoromethyl)phenyl)-9',9'-dimethyl-2-(trifluoromethyl)-5H,9'Hspiro[dibenzo[*b,e*]borinine-10,5'-quinolino[3,2,1-de]acridine](PBA-s-<sup>F</sup>XylBF)



To a stirring solution of 10-(2-bromophenyl)-9,9-dimethyl-9,10-dihydroacridine (0.20 g, 0.55 mmol) in THF at -78°C was added *n*-BuLi (1.6 M; 0.38 mL, 0.61 mmol) dropwise and the reaction mixture was stirred for 1.5 h at the same temperature. Then, **<sup>F</sup>XylB-<sup>F</sup>AQ** (0.31 g, 0.66 mmol) in THF (5 mL) was added dropwise at -78°C. After complete addition, the mixture was allowed to warm to room temperature overnight. After completion, the reaction was quenched with 5 mL water. The aqueous layer was separated and extracted with  $CH_2Cl_2$  (3 ×20 mL). The combined organic layers were washed with brine, dried with  $Na_2SO_4$  and concentrated *in vacuo* and the product was dissolved in 12 mL glacial acetic acid. The solution was heated to reflux added with 0.5 mL of concentrated hydrochloric acid and stirred for 6h. After cooling to room temperature, the mixture was poured into 100 mL ice water, and collected by filtration. The resulting precipitate was further purified via column chromatography with petroleum ether / dichloromethane (5:1) as eluents to afford a yellow solid (0.16 g, 39%).

<sup>1</sup>H NMR (400 MHz, THF- $d_8$ )  $\delta$  8.08 (dd, J = 7.9, 4.7 Hz, 2H), 7.86 (t, J = 7.9 Hz, 1H), 7.64 – 7.57 (m, 1H), 7.54 (dt, J = 8.3, 1.4 Hz, 1H), 7.48 (ddd, J = 8.6, 5.2, 2.5 Hz, 1H), 7.40 (dd, J = 8.0, 1.7 Hz, 1H), 7.31 (dddd, J = 17.0, 11.1, 7.9, 2.0 Hz, 2H), 7.23 – 7.12 (m, 4H), 7.11 – 6.99 (m, 2H), 6.95 (td, J = 7.3, 1.1 Hz, 1H), 6.74 – 6.60 (m, 2H), 6.41 (ddd, J = 13.6, 7.9, 1.4 Hz, 1H), 6.24 (ddd, J = 19.4, 7.9, 1.2 Hz, 1H), 2.31 (s, 3H), 1.87 (s, 3H).

<sup>13</sup>C NMR (176 MHz, THF-*d*<sub>8</sub>) δ 139.35, 137.28, 137.21, 136.99, 136.71, 135.86, 135.35, 135.07, 135.00, 134.67, 134.14, 133.83, 130.75, 129.61, 127.42, 126.83, 126.08, 126.05, 125.93, 125.90, 124.04, 123.85, 123.43, 123.02, 122.95, 121.70, 119.28, 116.41, 116.22, 53.55, 36.92, 29.63, 29.35.

<sup>11</sup>B NMR (225 MHz, THF-*d*<sub>8</sub>) δ 58.14. HR-ESIMS (m/z): [M + H] <sup>+</sup> calcd. for C<sub>43</sub>H<sub>27</sub>BF<sub>9</sub>N, 740.2093; found: 740.2174.

### S3 Experimental data

### S3.1 X-ray crystallographic analyses

Single-crystal X-ray diffraction data were collected on a Bruker D8 Venture 4-circle diffractometer using Mo/Cu- K $\alpha$  ( $\lambda = 0.71073$ Å/1.54184 Å). The images were processed and corrected for Lorentz-polarization effects and absorptionas implemented in the Bruker software packages. The structures were solved using the intrinsic phasing method(SHELXT) <sup>[3]</sup> and Fourier expansion technique. All non-

hydrogen atoms were refined in anisotropic approximation, with hydrogen atoms 'riding' in idealized positions, by full-matrix least squares against F2 of all data, using SHELXL software.<sup>[4]</sup> Hydrogen atoms were refined with isotropic displacement parameters. Olex2<sup>[5]</sup> was used as a graphical user interface and for the preparation of the CIF files. Crystal data and experimental details are listed in Table S1.

Table S1 Crystal data and structure refinement for PCZ-s-FXylB(, PBA-s-Mes\*B, and PBA-s-FXylB.

| Identification code                         | PCZ-s- <sup>F</sup> XylB                    | PBA-s-Mes*B                                 | PBA-s-FXylB**                               |
|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| CCDC Deposit number                         | 2426270                                     | 2426272                                     | N/A                                         |
| Empirical formula                           | $C_{47}H_{38}BF_6N$                         | $C_{52}H_{54}BN$                            | $C_{42}H_{28}NBF_6$                         |
| Formula weight                              | 741.59                                      | 703.77                                      | 671.46                                      |
| Temperature/K                               | 179.99                                      | 180.0                                       | 298                                         |
| Crystal system                              | monoclinic                                  | monoclinic                                  | triclinic                                   |
| Space group                                 | $P2_1/n$                                    | $P2_1/n$                                    | P-1                                         |
| a/Å                                         | 8.8760(4)                                   | 10.7285(7)                                  | 8.3507(18)                                  |
| b/Å                                         | 31.8729(11)                                 | 14.2452 (9)                                 | 17.021(4)                                   |
| c/Å                                         | 13.6461(5)                                  | 26.8675(15)                                 | 23.009(7)                                   |
| $\alpha/^{\circ}$                           | 90                                          | 90                                          | 90                                          |
| β/°                                         | 95.507(2)                                   | 99.276(2)                                   | 82.924(9)                                   |
| $\gamma/^{\circ}$                           | 90                                          | 90                                          | 90                                          |
| Volume/Å <sup>3</sup>                       | 3842.7(3)                                   | 4052.5(4)                                   | 3245.6(15)                                  |
| Ζ                                           | 4                                           | 4                                           | 4                                           |
| pcalcg/cm <sup>3</sup>                      | 1.282                                       | 1.154                                       | 1.374                                       |
| μ/mm-1                                      | 0.094                                       | 0.065                                       | 0.103                                       |
| F(000)                                      | 1544.0                                      | 1512.0                                      | 1384                                        |
| Crystal size/mm <sup>3</sup>                | $0.3\times0.3\times0.2$                     | $0.56 \times 0.45 \times 0.36$              | $0.29 \times 0.13 \times 0.07$              |
| Radiation                                   | Mo K $\alpha$ ( $\lambda = 0.71073$ )       | Mo Ka ( $\lambda = 0.71073$ )               | MoKa ( $\lambda = 0.71073$ )                |
| $2\Theta$ range for data collection/°       | 4.784 to 55.116                             | 4.366 to 55.106                             | 4.296 to 55.452                             |
|                                             | -11 $\leq$ h $\leq$ 10, -41 $\leq$ k $\leq$ | -12 $\leq$ h $\leq$ 13, -18 $\leq$ k $\leq$ | -10 $\leq$ h $\leq$ 10, -22 $\leq$ k $\leq$ |
| Index ranges                                | 41,                                         | 18,                                         | $21, -30 \le l \le 29$                      |
|                                             | $-17 \le l \le 17$                          | $-34 \le l \le 34$                          |                                             |
| Reflections collected                       | 50654                                       | 52793                                       | 39510                                       |
| Independent reflections                     | 8853 [ $R_{int} = 0.0687$ ,                 | 9333 [ $R_{int} = 0.0475$ ,                 | 15012 [Rint = 0.4511,                       |
|                                             | $R_{sigma} = 0.0558$ ]                      | $R_{sigma} = 0.0384]$                       | Rsigma = 0.6678]                            |
| Data/restraints/parameters                  | 8853/84/533                                 | 9333/0/498                                  | 15012/0/905                                 |
| Goodness-of-fit on F <sup>2</sup>           | 1.041                                       | 1.042                                       | 0.912                                       |
| Final R indexes $[I \ge 2\sigma(I)]$        | $R_1 = 0.0740, wR_2 =$                      | $R_1 = 0.0642, wR_2 =$                      | R1 = 0.1061, wR2 =                          |
| ·                                           | 0.1894                                      | 0.1557                                      | 0.2062                                      |
| Final R indexes [all data]                  | $R_1 = 0.1359, wR_2 =$                      | $R_1 = 0.0929, wR_2 =$                      | R1 = 0.4326, $wR2 =$                        |
| ···· [                                      | 0.2255                                      | 0.1738                                      | 0.3259                                      |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.57/-0.37                                  | 0.90/-0.73                                  | 0.61/-0.43                                  |

\*\* The poor crystal quality of **PBA-s-<sup>F</sup>XylB** resulted in low reliability of the single-crystal diffraction data, therefore, this information is provided for reference purposes only.

| Compound                   | a /Å              | b /Å             | c / ° |
|----------------------------|-------------------|------------------|-------|
| DCZ a FVID                 | D1 C4 1 500(4)    | B1-C9 1.544(4)   | 80.4  |
| PCZ-S- <sup>-</sup> Ayid   | BI-C4 1.390(4)    | B1-C17 1.537 (4) | 69.4  |
| DDA a Maa*D                | D1 (C11 1 502(2)) | B1-C10 1.560(3)  | 97.0  |
| r DA-S-Wies" D             | Ы-СП 1.392(3)     | B1-C19 1.556(3)  | 07.9  |
| DDA a FV-ID**              | D1 C25 1 562(10)  | B1-C1 1.539(10)  | 80.0  |
| РВА-8- <sup>*</sup> Луів** | BI-C35 1.505(10)  | B1-C12 1.529(9)  | 89.0  |

 Table S2 Selected bond lengths [Å] and angles [°] of PCZ-s-FXylB, PBA-s-Mes\*B and PBA-s 

 FXylB.

a. The bond lengths of  $B-C^FXyl/Mes^*$ , b. the bond lengths of  $B-C_{Ar}$ , c. the dihedral angles between the planes of boraanthracene and donor moiety.

\*\* The poor crystal quality of **PBA-s-<sup>F</sup>XylB** resulted in low reliability of the single-crystal diffraction data, therefore, this information is provided for reference purposes only.



**Figure S1.** The stacking diagrams of the three molecules along different cell-axis: **PCZ-s-<sup>F</sup>XylB** along a-axis (a) and c-axis; **PBA-s-<sup>F</sup>XylB** along a-axis (c) and b-axis (d); **PBA-s-Mes\*B** along a-axis (e) and b-axis (f).

**S3.2** Photophysical properties



Figure S2. UV-Vis and Photoluminescent spectra of (a) PCZ-s-Mes\*B, (b) PCZ-s-<sup>F</sup>XylB, (c) PBA-s-Mes\*B, (d) PBA-s-<sup>F</sup>XylB, (e) PBA-s-<sup>F</sup>XylBF in different solvents  $(1 \times 10^{-5} \text{ M})$  at 298 K, and corresponding photos under UV lamp.



Figure S3. Structure of (a) PCZ-s-Mes\*B, (b) PCZ-s-<sup>F</sup>XylB, (c) PBA-s-Mes\*B, (d) PBA-s-<sup>F</sup>XylB, (e) PBA-s-<sup>F</sup>XylBF, and corresponding transient PL decay curves in oxygen-free solvents  $(1 \times 10^{-5} \text{ M})$  at 298 K.

| Compounds                | Solvents           | $\lambda_{abs}[nm]$ | $\lambda_{\rm em}[\rm nm]$ | PLQY  | $\tau_{\rm PF}[\rm ns]/\tau_{\rm DF}[\mu s]$ |
|--------------------------|--------------------|---------------------|----------------------------|-------|----------------------------------------------|
|                          | Hexane             | 295,357             | 397                        | 0.016 | 1.5/-                                        |
|                          | Toluene            | 275,295,357         | 430                        | 0.022 | 6.1/-                                        |
| PCZ-s-Mes*B              | THF                | 296,356             | 460                        | 0.016 | 30.8/-                                       |
|                          | $CH_2Cl_2$         | 296,358             | 470                        | 0.087 | 56.5/-                                       |
|                          | CH <sub>3</sub> CN | 296,356             | 492                        | 0.74  | 1.9/16.9                                     |
|                          | Hexane             | 275,353             | 428                        | 0.03  | 4.9/0.16                                     |
|                          | Toluene            | 292,356             | 459                        | 1.00  | 13.9/2.22                                    |
| PCZ-s-FXylB              | THF                | 294,357             | 486                        | 0.96  | 3.1/3.95                                     |
|                          | $CH_2Cl_2$         | 276,357             | 495                        | 1.00  | 21.4/7.70                                    |
|                          | CH <sub>3</sub> CN | 357                 | 523                        | 1.00  | 37.8/6.53                                    |
|                          | Hexane             | 278,296             | 418                        | 0.06  | 8.3/0.12                                     |
|                          | Toluene            | 276,292             | 447                        | 1.00  | 29.2/2.39                                    |
| PBA-s-Mes*B              | THF                | 279,295             | 476                        | 1.00  | 124.7/2.01                                   |
|                          | $CH_2Cl_2$         | 281,294             | 483                        | 0.82  | 130.1/0.23                                   |
|                          | CH <sub>3</sub> CN | 278                 | 511                        | 1.00  | 128.0/4.70                                   |
|                          | Hexane             | 280                 | 447                        | 1.00  | 73.5/0.70                                    |
|                          | Toluene            | 279                 | 486                        | 1.00  | 87.2/6.71                                    |
| PBA-s- <sup>F</sup> XylB | THF                | 280                 | 512                        | 1.00  | 115.8/3.84                                   |
|                          | $CH_2Cl_2$         | 281                 | 525                        | 1.00  | 92.9/5.39                                    |
|                          | CH <sub>3</sub> CN | 279                 | 550                        | 1.00  | 106.6/4.10                                   |
|                          | Hexane             | 280                 | 480                        | 1.00  | 84.5/2.73                                    |
|                          | Toluene            | 276,290             | 522                        | 1.00  | 66.8/7.04                                    |
| PBA-s-FXylBF             | THF                | 280                 | 557                        | 0.90  | 64.9/4.59                                    |
|                          | $CH_2Cl_2$         | 279                 | 563                        | 1.00  | 73.6/4.77                                    |
|                          | CH <sub>3</sub> CN | 279                 | 599                        | 0.20  | 8.4/0.12                                     |

Table S3. Photophysical parameters of spiro compounds in different solvents under oxygen-free condition.



Figure S4. Transient decay curves and PLQY of PCZ-s- $^{F}XylB$  in  $H_{2}O/THF$  with different water fraction



Figure S5. Transient decay curves and PLQY of PBA-s-Mes\*B in  $H_2O/THF$  with different water fraction



Figure S6. Transient decay curves and PLQY of PBA-s-FXylB in H2O/THF with different water fraction



Figure S7. Transient decay curves and PLQY of PBA-s-<sup>F</sup>XylBF in H<sub>2</sub>O/THF with different water fraction



Figure S8. Dynamic light scattering (DLS) of compounds (a) PCZ-s-<sup>F</sup>XylB, (b) PBA-s-Mes\*B, (c) PBA-s-<sup>F</sup>XylB, (d) PBA-s-<sup>F</sup>XylBF



**Figure S9.** Normalized fluorescence and phosphorescence spectra at 77 K of **PCZ-s-Mes\*B**, **PCZ-ss-**<sup>F</sup>**XyIB**, **PBA-s-Mes\*B**, **PBA-s-**<sup>F</sup>**XyIB** and **PBA-s-**<sup>F</sup>**XyIBF** in degassed toluene (1×10<sup>-5</sup> M).



Figure S10. (a-c) Temperature dependent PL spectra of spiro B-N compounds in doped films (5 wt % PBA-s-Mes\*B, PBA-s-<sup>F</sup>XylB and PBA-s-<sup>F</sup>XylBF doped in mCP); (d-f) Temperature dependent

transient PL decay curves with log-log diagram of spiro B-N compounds in doped films: 5 wt % **PBA-s-Mes\*B**, **PBA-s-**<sup>F</sup>**XyIB** and **PBA-s-**<sup>F</sup>**XyIBF** doped in mCP; (g-i) Arrhenius plots of  $k_{RISC}$  in doped films.



**Figure S11.** (a) Temperature dependent PL spectra of **PCZ-s-<sup>F</sup>XylB** in doped films (5 wt % in mCP); (b-c) Temperature dependent transient PL decay curves with log-log diagram of **PCZ-s-<sup>F</sup>XylB** in doped films (5 wt % in mCP).



### **S3.3** Electrochemical properties

**Figure S12.** Cyclic voltammogram (CV) diagrams of **PCZ-s-Mes\*B** (a), **PCZ-s-<sup>F</sup>XylB** (b), **PBA-s-Mes\*B** (c), **PBA-s-<sup>F</sup>XylB** (d) and **PBA-s-<sup>F</sup>XylBF** (e) showing the reduction (recorded in THF) and oxidation waves (recorded in CH<sub>2</sub>Cl<sub>2</sub>) vs Fc/Fc<sup>+</sup>, using n-Bu<sub>4</sub>NPF<sub>6</sub> (0.1 M) as the electrolyte, v = 100 mV/s.

### **S3.4** Theoretical calculations

Table S4. Coordinates of optimized structure of PCZ-s-Mes\*B, PCZ-s-FXylB, PBA-s-Mes\*B, PBA-s-FXylB, PBA-s-FXylBF

|           |          |                  | PCZ-s-l  | Mes*B   |          |                 |          |
|-----------|----------|------------------|----------|---------|----------|-----------------|----------|
| Flamont - | Coor     | rdinates (angstr | roms)    | Flamont | Coo      | rdinates (angst | roms)    |
| Liement - | Х        | Y                | Ζ        | Liement | Х        | Y               | Z        |
| С         | 0.62151  | -0.63931         | 0.57953  | Н       | 2.74019  | -5.57652        | 1.48454  |
| С         | 1.70721  | 0.4427           | 0.55777  | Н       | 0.3082   | -5.13699        | 1.84752  |
| С         | 3.01027  | 0.06451          | 0.30989  | Н       | -0.57149 | -2.86841        | 1.48627  |
| Ν         | 3.46678  | -1.24437         | 0.15962  | Н       | 0.46311  | 2.13208         | 0.91626  |
| С         | 2.64039  | -2.29692         | 0.59159  | Н       | 4.60442  | 3.05319         | 0.18119  |
| С         | 1.27424  | -2.02743         | 0.82713  | Н       | 1.86712  | -1.03341        | -1.78621 |
| С         | -0.03094 | -0.68991         | -0.81832 | Н       | 0.94726  | -1.1598         | -4.04533 |
| С         | -1.41591 | -0.53675         | -1.02109 | Н       | -1.50056 | -0.89517        | -4.42516 |
| В         | -2.37153 | -0.27347         | 0.17091  | Н       | -2.98813 | -0.49674        | -2.48323 |
| С         | -1.72386 | -0.17967         | 1.57609  | Н       | -3.58023 | 0.20577         | 2.58573  |
| С         | -0.33893 | -0.34181         | 1.73793  | Н       | -2.5725  | 0.38174         | 4.84424  |
| С         | 3.15215  | -3.57374         | 0.85267  | Н       | -0.11273 | 0.0931          | 5.10727  |
| С         | 2.32064  | -4.59499         | 1.29149  | Н       | 1.2925   | -0.36628        | 3.1398   |
| С         | 0.96812  | -4.34956         | 1.50101  | Н       | -6.80841 | -1.88775        | -0.39928 |
| С         | 0.47023  | -3.07102         | 1.28355  | Н       | -6.23136 | 2.27225         | -0.90361 |
| С         | 1.47343  | 1.81175          | 0.70447  | Н       | 6.82789  | 1.57215         | -0.46654 |
| С         | 2.50119  | 2.76606          | 0.58963  | Н       | 7.74661  | -2.57418        | -1.11297 |
| С         | 3.80123  | 2.33369          | 0.2926   | Н       | 5.46665  | -3.21428        | -0.61388 |
| С         | 4.06679  | 0.97587          | 0.14853  | Н       | -10.1007 | -0.0808         | -0.02612 |
| С         | 0.79999  | -0.91376         | -1.92274 | Н       | -8.81967 | 0.43899         | 1.0808   |
| С         | 0.27936  | -0.98642         | -3.2076  | Н       | -8.81377 | -1.20033        | 0.43035  |
| С         | -1.0918  | -0.83799         | -3.42168 | Н       | -8.43416 | 2.44754         | -0.46695 |
| С         | -1.92043 | -0.61607         | -2.33417 | Н       | -9.68072 | 1.82353         | -1.54567 |
| С         | -2.51008 | 0.08041          | 2.71628  | Н       | -8.07776 | 2.18682         | -2.18155 |
| С         | -1.95008 | 0.18027          | 3.97845  | Н       | -7.93725 | -0.19822        | -3.11251 |
| С         | -0.56931 | 0.01841          | 4.12551  | Н       | -9.58024 | -0.45373        | -2.50315 |
| С         | 0.22259  | -0.23992         | 3.01681  | Н       | -8.29098 | -1.58089        | -2.07586 |
| С         | -3.92558 | -0.09513         | -0.06928 | Н       | -4.31224 | -4.50462        | -1.08025 |
| С         | -4.80863 | -1.21621         | -0.07571 | Н       | -3.82714 | -3.02787        | -1.92436 |
| С         | -6.15725 | -1.02484         | -0.37872 | Н       | -5.53675 | -3.35343        | -1.6308  |
| С         | -6.707   | 0.21594          | -0.67797 | Н       | -2.86368 | -2.50299        | 1.66916  |
| С         | -5.84089 | 1.29659          | -0.66046 | Н       | -2.24188 | -2.60022        | 0.00911  |
| С         | -4.47607 | 1.18269          | -0.36301 | Н       | -2.8562  | -4.03128        | 0.79468  |
| С         | 4.83512  | -1.18451         | -0.16196 | Н       | -5.07878 | -4.38374        | 1.37095  |
| С         | 5.23826  | 0.17711          | -0.16315 | Н       | -6.42088 | -3.38693        | 0.83213  |
| С         | 6.55219  | 0.52535          | -0.47493 | Н       | -5.36579 | -2.80846        | 2.12162  |
|           |          |                  |          |         |          |                 |          |

| С | 7.48611  | -0.45551 | -0.80337 | Н | -3.14969 | 3.88514  | -2.09483 |
|---|----------|----------|----------|---|----------|----------|----------|
| С | 7.04883  | -1.7937  | -0.83162 | Н | -4.63965 | 2.98698  | -2.41216 |
| С | 5.74784  | -2.17491 | -0.52534 | Н | -3.07729 | 2.17523  | -2.54099 |
| С | -8.19854 | 0.33762  | -1.01091 | Н | -1.61196 | 1.84404  | -0.48283 |
| С | -9.03061 | -0.15752 | 0.18948  | Н | -2.21116 | 2.32109  | 1.11665  |
| С | -8.61255 | 1.78432  | -1.3173  | Н | -1.84756 | 3.53031  | -0.10489 |
| С | -8.51886 | -0.52677 | -2.24728 | Н | -3.85923 | 4.55917  | 0.28196  |
| С | -4.4248  | -2.70428 | 0.1511   | Н | -4.55131 | 3.34457  | 1.36414  |
| С | -4.5364  | -3.44026 | -1.20235 | Н | -5.42944 | 3.85983  | -0.07647 |
| С | -3.01471 | -2.95414 | 0.68932  | Н | 2.95265  | 5.85444  | 2.10747  |
| С | -5.38622 | -3.35279 | 1.17392  | Н | 4.18519  | 4.64103  | 1.75526  |
| С | -3.70308 | 2.52542  | -0.47761 | Н | 2.87738  | 4.26101  | 2.8762   |
| С | -3.64347 | 2.91612  | -1.97117 | Н | 2.43772  | 6.09873  | -0.38892 |
| С | -2.26513 | 2.53321  | 0.05008  | Н | 2.01615  | 4.67181  | -1.34943 |
| С | -4.43818 | 3.63201  | 0.31559  | Н | 3.6682   | 4.89316  | -0.77236 |
| С | 2.24867  | 4.26894  | 0.78443  | Н | 0.45194  | 4.07717  | 2.02733  |
| С | 3.12004  | 4.78491  | 1.94811  | Н | 0.11683  | 4.28231  | 0.30377  |
| С | 2.61702  | 5.02585  | -0.50785 | Н | 0.65796  | 5.65448  | 1.26644  |
| С | 0.783    | 4.57928  | 1.11494  | Н | 10.29194 | -0.37738 | -2.84623 |
| С | 8.94505  | -0.13044 | -1.14766 | Н | 8.60331  | -0.10655 | -3.30541 |
| С | 9.25459  | -0.60435 | -2.58249 | Н | 9.1128   | -1.68123 | -2.69517 |
| С | 9.87847  | -0.85491 | -0.15619 | Н | 9.7518   | -1.93882 | -0.19673 |
| С | 9.23923  | 1.37471  | -1.06782 | Н | 9.67882  | -0.5359  | 0.86995  |
| Н | 4.21011  | -3.75995 | 0.7539   | Н | 10.92574 | -0.63426 | -0.3836  |
| Н | 9.06175  | 1.77151  | -0.06489 | Н | 10.28801 | 1.55991  | -1.31286 |
| Н | 8.6323   | 1.94676  | -1.77438 |   |          |          |          |

PCZ-s-FXylB

| E1        | Coor     | Coordinates (angstroms) |          |         | Coordinates (angstroms) |          |          |  |
|-----------|----------|-------------------------|----------|---------|-------------------------|----------|----------|--|
| Element - | Х        | Y                       | Z        | Element | Х                       | Y        | Ζ        |  |
| F         | 4.07232  | -2.57483                | 0.48054  | С       | 2.51119                 | -0.70409 | -3.70682 |  |
| Ν         | -2.81431 | -1.32953                | -0.04331 | Н       | 3.08681                 | -0.64581 | -4.62449 |  |
| F         | 5.28675  | -2.59208                | -1.31927 | С       | 4.56239                 | 0.18358  | 0.17461  |  |
| F         | 6.1934   | -3.0232                 | 0.60109  | F       | 3.45538                 | 2.81628  | 1.58961  |  |
| F         | 2.8603   | 2.36378                 | -0.44717 | С       | -0.28144                | -4.69846 | -0.10411 |  |
| С         | -2.24625 | -0.06292                | -0.17558 | Н       | 0.38286                 | -5.55511 | -0.09934 |  |
| С         | -0.89756 | 0.22628                 | -0.22346 | С       | -2.50303                | -3.76386 | -0.1575  |  |
| С         | 0.11909  | -0.90786                | -0.0934  | Н       | -3.56607                | -3.91658 | -0.24582 |  |
| С         | -3.23993 | 0.92576                 | -0.22236 | С       | -5.25259                | -2.06004 | 0.27258  |  |
| С         | 1.0173   | -0.85422                | -1.33487 | Н       | -5.08691                | -3.11233 | 0.44554  |  |
| С         | -0.58362 | -2.28335                | -0.07477 | С       | -6.55211                | -1.57033 | 0.32536  |  |
| С         | 0.82712  | -0.70896                | 1.25194  | Н       | -7.34783                | -2.28406 | 0.50624  |  |
| С         | -1.98331 | -2.46368                | -0.08146 | С       | 5.59382                 | -0.77112 | 0.16542  |  |
| С         | -4.50146 | 0.22479                 | -0.08751 | C       | -1.6617                 | -4.86726 | -0.16335 |  |
| С         | 0.06241  | -0.85758                | 2.41303  | Н       | -2.09257                | -5.86114 | -0.22081 |  |

|   |          |          | PBA-s-   | Mes* | B        |          |          |
|---|----------|----------|----------|------|----------|----------|----------|
| Н | 0.76731  | 3.56702  | -1.70404 |      |          |          |          |
| Н | -0.67044 | 3.94146  | -2.65748 | Н    | -1.76714 | 6.06474  | -0.68894 |
| Н | 0.22436  | 5.23776  | -1.84791 | Н    | -2.78296 | 4.86559  | -1.48834 |
| С | -0.11787 | 4.2029   | -1.75125 | Н    | -2.80974 | 5.02349  | 0.27597  |
| С | -8.33644 | 0.23803  | 0.22914  | C    | -2.16427 | 5.04996  | -0.60593 |
| Н | 0.66714  | -1.22269 | -4.69755 | Н    | -0.7868  | 4.28373  | 1.66115  |
| С | 1.15238  | -1.02769 | -3.7466  | Н    | 0.68925  | 3.74098  | 0.86316  |
| Н | 3.77671  | 0.13041  | 2.72289  | Н    | 0.1784   | 5.42293  | 0.70851  |
| С | 2.73127  | -0.14521 | 2.63644  | C    | -0.18109 | 4.39041  | 0.75746  |
| Н | 4.1642   | -0.20359 | -2.44862 | Н    | -9.97489 | 0.18172  | 1.66895  |
| С | 3.11059  | -0.45806 | -2.48423 | Н    | -8.89532 | -1.20938 | 1.78475  |
| С | -1.50163 | 2.59752  | -0.39781 | Н    | -8.37606 | 0.35607  | 2.41022  |
| Н | -0.63874 | -1.34613 | -2.61712 | С    | -8.92891 | -0.13292 | 1.6041   |
| С | 0.41598  | -1.09859 | -2.57338 | Н    | -8.73596 | -0.22479 | -1.86829 |
| Н | -3.6182  | 3.03426  | -0.37272 | Н    | -9.1074  | -1.55759 | -0.7742  |
| С | -2.85787 | 2.26485  | -0.33887 | Н    | -10.187  | -0.16369 | -0.85496 |
| Н | 2.41005  | -0.13403 | 4.76104  | С    | -9.13728 | -0.47129 | -0.88199 |
| С | 1.97008  | -0.29357 | 3.78237  | Н    | -9.54775 | 2.02682  | 0.08214  |
| Н | 1.31175  | -3.26494 | -0.05906 | Н    | -7.97206 | 2.3187   | 0.81463  |
| С | 0.23696  | -3.41163 | -0.07413 | Н    | -8.10944 | 2.08091  | -0.93504 |
| С | -6.87063 | -0.20854 | 0.16513  | C    | -8.49058 | 1.75367  | 0.03574  |
| Н | -6.00189 | 1.74367  | -0.13731 | Н    | 6.56862  | 2.94435  | 0.44535  |
| С | -5.81804 | 0.68198  | -0.03261 | C    | 6.30426  | 1.8969   | 0.37337  |
| Н | 0.01391  | -0.77241 | 4.55324  | Н    | 8.33944  | 1.20816  | 0.44216  |
| С | 0.62492  | -0.65229 | 3.6644   | С    | 7.29614  | 0.92505  | 0.36747  |
| F | 4.42974  | 3.81483  | -0.06817 | Н    | 7.6998   | -1.18128 | 0.25949  |
| Н | 0.50781  | 1.81349  | -0.36356 | С    | 6.93821  | -0.4113  | 0.26245  |
| С | -0.54481 | 1.56487  | -0.33628 | С    | 3.93394  | 2.62861  | 0.33889  |
| С | 2.38402  | -0.53056 | -1.2781  | В    | 3.03351  | -0.2338  | 0.08104  |
| С | -4.2096  | -1.16111 | 0.0417   | С    | 5.28541  | -2.23568 | -0.01426 |
| С | 2.18195  | -0.34539 | 1.35353  | С    | -1.00698 | 4.04665  | -0.50009 |
| Н | -0.9828  | -1.13528 | 2.33732  | С    | 4.96308  | 1.52862  | 0.28081  |
|   |          |          |          |      |          |          |          |

| Elamont - | Coor     | dinates (angstr | oms)     | Flomont | Coordinates (angstroms) |          | roms)    |
|-----------|----------|-----------------|----------|---------|-------------------------|----------|----------|
| Element - | Х        | Y               | Ζ        | Element | Х                       | Y        | Ζ        |
| С         | -0.05975 | 0.34538         | 4.16612  | С       | 8.32911                 | 0.26705  | 0.37543  |
| С         | 1.3243   | 0.20773         | 4.02677  | Н       | -0.50399                | 0.42031  | 5.1535   |
| С         | 1.86785  | 0.11836         | 2.7568   | Н       | 1.96223                 | 0.17162  | 4.90377  |
| С         | 1.06251  | 0.16123         | 1.60054  | Н       | 2.93923                 | 0.00175  | 2.63377  |
| С         | -0.32706 | 0.28127         | 1.75606  | Н       | -1.9453                 | 0.47379  | 3.16008  |
| С         | -0.87167 | 0.37806         | 3.04279  | Н       | 2.27041                 | -0.17919 | -2.47309 |
| С         | -0.67815 | 0.14902         | -0.81749 | Н       | 0.74974                 | -0.21371 | -4.4292  |
| С         | 0.70961  | 0.02883         | -1.01415 | Н       | -1.70881                | -0.01493 | -4.0582  |
| С         | 1.19844  | -0.09795        | -2.32887 | Н       | -2.59853                | 0.21004  | -1.80318 |
|           |          |                 |          |         |                         |          |          |

| С | 0.35174  | -0.11411  | -3.42465 | Н | -3.99457 | 5.01827  | 0.71871  |
|---|----------|-----------|----------|---|----------|----------|----------|
| С | -1.02366 | -6.40E-04 | -3.21658 | Н | -1.54811 | 4.94573  | 1.20992  |
| С | -1.52821 | 0.12993   | -1.93033 | Н | -0.37388 | 2.78106  | 1.19884  |
| В | 1.68931  | 0.04041   | 0.18751  | Н | -5.19673 | 2.93092  | 0.1821   |
| С | -3.4533  | 4.07884   | 0.68272  | Н | -0.78213 | -2.24784 | 1.42354  |
| С | -2.08822 | 4.03811   | 0.96449  | Н | -2.31658 | -4.17631 | 1.58538  |
| С | -1.42565 | 2.81872   | 0.94758  | Н | -4.71538 | -3.89122 | 1.0937   |
| С | -2.08383 | 1.63046   | 0.62145  | Н | -7.84121 | -1.51637 | -1.74418 |
| С | -3.45026 | 1.68526   | 0.31852  | Н | -7.96433 | 0.06854  | -3.61838 |
| С | -4.13156 | 2.90983   | 0.37573  | Н | -6.28911 | 1.902    | -3.80064 |
| С | -1.31493 | 0.29771   | 0.58105  | Н | -4.50947 | 2.11473  | -2.10537 |
| С | -2.29321 | -0.87387  | 0.7756   | Н | -5.99642 | 0.19937  | 1.79859  |
| С | -3.65152 | -0.72986  | 0.48583  | Н | -6.46262 | -1.33547 | 2.54197  |
| Ν | -4.15363 | 0.50204   | 0.01736  | Н | -7.61088 | -0.46149 | 1.50632  |
| С | -1.83091 | -2.12474  | 1.18705  | Н | -6.55193 | -3.37571 | -0.59944 |
| С | -2.69449 | -3.20611  | 1.28187  | Н | -7.9275  | -2.5345  | 0.13322  |
| С | -4.04988 | -3.04271  | 0.99896  | Н | -6.79599 | -3.39303 | 1.15411  |
| С | -4.55203 | -1.80212  | 0.62031  | Н | 6.05862  | 1.81279  | -0.42959 |
| С | -6.03585 | -1.50186  | 0.40588  | Н | 5.69288  | -2.39861 | -0.54752 |
| С | -6.13859 | -0.59239  | -0.8175  | Н | 3.9803   | 4.52741  | -0.75695 |
| С | -5.201   | 0.44839   | -0.93167 | Н | 4.52773  | 3.23235  | -1.82776 |
| С | -7.11553 | -0.71522  | -1.80474 | Н | 5.45222  | 3.65877  | -0.38091 |
| С | -7.18738 | 0.17901   | -2.86986 | Н | 4.71119  | 2.78007  | 1.88897  |
| С | -6.25493 | 1.2074    | -2.968   | Н | 3.01944  | 2.34138  | 2.14223  |
| С | -5.25587 | 1.33645   | -2.01114 | Н | 3.43727  | 3.98863  | 1.66325  |
| С | -6.558   | -0.72214  | 1.64231  | Н | 1.88151  | 3.83781  | -0.30775 |
| С | -6.8706  | -2.77677  | 0.25673  | Н | 1.41434  | 2.22778  | 0.16454  |
| С | 3.25041  | -0.08199  | -0.02854 | Н | 1.98853  | 2.51448  | -1.47485 |
| С | 4.07304  | 1.08273   | -0.14321 | Н | 3.45039  | -4.65249 | 0.91254  |
| С | 5.44039  | 0.93026   | -0.36506 | Н | 4.13821  | -3.2865  | 1.79978  |
| С | 6.05731  | -0.30833  | -0.52058 | Н | 4.97068  | -3.94858 | 0.39203  |
| С | 5.24726  | -1.42522  | -0.41628 | Н | 1.04783  | -2.17702 | -0.0971  |
| С | 3.87147  | -1.35288  | -0.15238 | Н | 1.73163  | -2.38778 | 1.52547  |
| С | 3.58148  | 2.54673   | 0.0323   | Н | 1.3798   | -3.77857 | 0.50391  |
| С | 4.44461  | 3.53851   | -0.782   | Н | 2.66194  | -4.31795 | -1.50743 |
| С | 3.69297  | 2.93326   | 1.52239  | Н | 4.07787  | -3.3706  | -1.98383 |
| С | 2.13825  | 2.78156   | -0.42839 | Н | 2.45923  | -2.68444 | -2.15194 |
| С | 3.17161  | -2.74033  | -0.08677 | Н | 8.95811  | 0.32757  | -2.31444 |
| С | 3.9898   | -3.7078   | 0.80209  | Н | 7.59868  | 1.4211   | -2.04227 |
| С | 1.75457  | -2.751    | 0.49844  | Н | 7.3529   | -0.07357 | -2.9457  |
| С | 3.09131  | -3.31115  | -1.51906 | Н | 9.13401  | -1.83794 | -1.13402 |
| С | 7.56398  | -0.38522  | -0.7941  | Н | 7.57302  | -2.34457 | -1.77634 |
| С | 7.88581  | 0.36918   | -2.10019 | Н | 7.88327  | -2.41613 | -0.03464 |
| С | 8.05805  | -1.83173  | -0.94168 | Н | 9.4085   | 0.22298  | 0.20109  |
|   |          |           |          | • |          |          |          |

| Н         | 8.0564   | 1.31666        | 0.50359  | Н         | 8.11527  | -0.24855       | 1.31526        |  |  |  |
|-----------|----------|----------------|----------|-----------|----------|----------------|----------------|--|--|--|
|           |          |                | PBA-s-   | FXylB     |          |                |                |  |  |  |
|           | Coor     | dinates (angst | roms)    |           | Coo      | rdinates (angs | es (angstroms) |  |  |  |
| Element - | Х        | Y              | Ζ        | Element · | Х        | Y              | Z              |  |  |  |
| F         | -3.03008 | 2.38846        | -0.52744 | Н         | 3.88121  | 2.12732        | -2.00782       |  |  |  |
| F         | -2.65562 | -2.65561       | 0.29454  | С         | 6.19663  | -2.56889       | 0.75826        |  |  |  |
| F         | -3.33417 | -3.09206       | -1.72184 | Н         | 7.24897  | -2.27995       | 0.74489        |  |  |  |
| F         | -5.03059 | 3.18308        | -0.8147  | Н         | 6.00249  | -3.203         | -0.10976       |  |  |  |
| F         | -4.37318 | 2.59557        | 1.16483  | Н         | 6.04932  | -3.16602       | 1.65968        |  |  |  |
| F         | -4.45291 | -3.83286       | -0.02068 | С         | -3.75991 | -2.7684        | -0.48015       |  |  |  |
| Ν         | 3.38362  | 0.57679        | 0.1369   | С         | -2.2625  | 0.28028        | 3.77526        |  |  |  |
| С         | 2.59198  | 1.73276        | 0.29554  | Н         | -2.93531 | 0.28822        | 4.62626        |  |  |  |
| С         | -0.0608  | 0.02388        | -0.97418 | С         | -0.88651 | 0.43709        | 3.96293        |  |  |  |
| С         | 2.88601  | -0.66662       | 0.58114  | Н         | -0.48506 | 0.56838        | 4.96265        |  |  |  |
| С         | -1.43655 | -0.13553       | -1.22389 | С         | 6.7092   | 0.30125        | -2.41872       |  |  |  |
| С         | 1.20516  | 1.62246        | 0.44135  | Н         | 7.56408  | 0.20418        | -3.07897       |  |  |  |
| С         | 0.50739  | 0.25241        | 0.43556  | С         | -5.96146 | -1.65409       | -0.70352       |  |  |  |
| С         | 1.51362  | -0.8712        | 0.7231   | Н         | -6.38469 | -2.64414       | -0.82013       |  |  |  |
| С         | 4.52212  | 0.53952        | -0.70366 | С         | -6.77749 | -0.53317       | -0.76878       |  |  |  |
| С         | 5.48818  | -0.4513        | -0.45663 | Н         | -7.84149 | -0.64029       | -0.94396       |  |  |  |
| С         | -4.59211 | -1.51168       | -0.48113 | С         | -6.21726 | 0.72636        | -0.60556       |  |  |  |
| С         | -0.51797 | 0.25552        | 1.57542  | Н         | -6.83982 | 1.61099        | -0.6578        |  |  |  |
| С         | -1.89892 | 0.10521        | 1.37071  | С         | -4.32065 | 2.25158        | -0.14292       |  |  |  |
| С         | 1.05846  | -2.14128       | 1.08059  | С         | 3.81127  | -1.69638       | 0.83429        |  |  |  |
| Н         | -0.00763 | -2.31182       | 1.17631  | С         | 5.29483  | -1.33173       | 0.77699        |  |  |  |
| С         | 3.19894  | 2.99642        | 0.355    | С         | -0.02736 | 0.42347        | 2.87456        |  |  |  |
| Н         | 4.27755  | 3.06773        | 0.2914   | Н         | 1.03897  | 0.54211        | 3.03044        |  |  |  |
| С         | 3.32355  | -2.95474       | 1.16938  | С         | 0.83999  | -0.01306       | -2.04407       |  |  |  |
| Н         | 4.01069  | -3.77094       | 1.35253  | Н         | 1.90205  | 0.09799        | -1.86698       |  |  |  |
| С         | -4.84796 | 0.8595         | -0.37824 | С         | -3.98982 | -0.25256       | -0.31233       |  |  |  |
| С         | 0.44598  | 2.78754        | 0.5788   | С         | 5.6431   | -0.49746       | 2.03851        |  |  |  |
| Н         | -0.63011 | 2.70224        | 0.67343  | Н         | 5.02884  | 0.40097        | 2.10439        |  |  |  |
| С         | -2.75371 | 0.11708        | 2.49222  | Н         | 6.6924   | -0.19223       | 2.01033        |  |  |  |
| Н         | -3.82081 | -0.00377       | 2.34104  | Н         | 5.47579  | -1.09153       | 2.9406         |  |  |  |
| С         | -1.86588 | -0.31412       | -2.55458 | С         | 1.04069  | 4.04084        | 0.58948        |  |  |  |
| Н         | -2.92559 | -0.43235       | -2.75283 | Н         | 0.42947  | 4.93102        | 0.68716        |  |  |  |
| С         | 0.3931   | -0.19712       | -3.3448  | С         | 5.74524  | 1.27752        | -2.6517        |  |  |  |
| Н         | 1.11255  | -0.22434       | -4.15693 | Н         | 5.83299  | 1.94354        | -3.50358       |  |  |  |
| С         | 1.95217  | -3.1811        | 1.28728  | C         | -0.96997 | -0.34589       | -3.60878       |  |  |  |
| Н         | 1.58573  | -4.16775       | 1.54853  | Н         | -1.31956 | -0.48716       | -4.62597       |  |  |  |
| С         | 6.56707  | -0.5593        | -1.33325 | В         | -2.43171 | -0.09366       | -0.05627       |  |  |  |
| Н         | 7.31695  | -1.32257       | -1.16825 | Н         | 2.91411  | 5.10998        | 0.53078        |  |  |  |
| С         | 2.42897  | 4.14045        | 0.49143  | С         | 4.64789  | 1.39026        | -1.80701       |  |  |  |
|           |          |                | PBA-s-F  | XylBF     |          |                |                |  |  |  |

| Flement - | Coor     | dinates (angstro | oms)     | Flement | Coordinates (angstroms) |          |          |
|-----------|----------|------------------|----------|---------|-------------------------|----------|----------|
|           | X        | Y                | Z        | Element | X                       | Y        | Z        |
| В         | 2.42862  | -0.5933          | -0.03636 | С       | 4.30849                 | -0.15232 | 2.26072  |
| С         | 1.43037  | -1.74556         | 0.14494  | F       | 5.03539                 | -0.56464 | 3.3199   |
| С         | 0.05325  | -1.46787         | 0.26046  | F       | 3.02538                 | -0.53731 | 2.48359  |
| С         | -0.5156  | -0.04153         | 0.21112  | F       | 4.31467                 | 1.2005   | 2.2813   |
| С         | 0.50941  | 1.07749          | -0.00674 | С       | 3.73712                 | -1.56099 | -2.556   |
| С         | 1.89103  | 0.85112          | -0.11448 | F       | 3.24909                 | -2.82119 | -2.57091 |
| С         | -1.51783 | 0.02658          | -0.95018 | F       | 2.66766                 | -0.72602 | -2.61599 |
| С         | -2.89507 | -0.03552         | -0.72473 | F       | 4.43287                 | -1.39515 | -3.70063 |
| Ν         | -3.40373 | -0.2078          | 0.58112  | C       | 0.32293                 | 4.84833  | -0.42949 |
| С         | -2.60364 | 0.14503          | 1.68743  | F       | -0.91287                | 4.97043  | 0.09918  |
| С         | -1.21155 | 0.23482          | 1.55393  | F       | 0.23645                 | 5.20964  | -1.73142 |
| С         | -3.20542 | 0.45826          | 2.91828  | F       | 1.11676                 | 5.76117  | 0.17565  |
| С         | -2.42658 | 0.78676          | 4.01929  | Н       | -4.28585                | 0.43628  | 2.99726  |
| С         | -1.03422 | 0.82747          | 3.90617  | Н       | -2.90805                | 1.02068  | 4.9636   |
| С         | -0.44315 | 0.56548          | 2.67616  | Н       | -0.41773                | 1.07349  | 4.76426  |
| С         | -1.05355 | 0.10275          | -2.26681 | Н       | 0.63619                 | 0.60847  | 2.57581  |
| С         | -1.94455 | 0.12197          | -3.33213 | Н       | 0.01618                 | 0.12571  | -2.44712 |
| С         | -3.32028 | 0.09476          | -3.09011 | Н       | -1.57323                | 0.16828  | -4.35055 |
| С         | -3.8158  | 0.03221          | -1.79001 | Н       | -4.00628                | 0.13352  | -3.92764 |
| С         | -4.56547 | -1.01131         | 0.70534  | Н       | -7.38139                | -1.74953 | -1.03865 |
| С         | -5.30059 | 0.09358          | -1.42692 | Н       | -7.67848                | -3.32029 | 0.83482  |
| С         | -5.52766 | -0.93598         | -0.31978 | Н       | -5.95032                | -3.44857 | 2.62785  |
| С         | -6.63356 | -1.786           | -0.25548 | Н       | -3.95296                | -1.998   | 2.51989  |
| С         | -6.80343 | -2.67935         | 0.802    | Н       | -6.03595                | -1.13031 | -3.08651 |
| С         | -5.84081 | -2.74553         | 1.80795  | Н       | -6.0291                 | 0.6155   | -3.4046  |
| С         | -4.7173  | -1.92575         | 1.75586  | Н       | -7.25756                | -0.07001 | -2.35611 |
| С         | -6.20523 | -0.14587         | -2.64085 | Н       | -5.41429                | 2.26729  | -1.62339 |
| С         | -5.60857 | 1.50713          | -0.86055 | Н       | -6.6592                 | 1.56943  | -0.56028 |
| С         | 1.85671  | -3.08908         | 0.22075  | Н       | -4.98885                | 1.72977  | 0.01042  |
| С         | 0.95745  | -4.12894         | 0.39755  | Н       | 2.91617                 | -3.30691 | 0.13361  |
| С         | -0.40665 | -3.83722         | 0.50397  | н       | 1.30465                 | -5.15593 | 0.45164  |
| С         | -0.85223 | -2.52237         | 0.43737  | Н       | -1.12663                | -4.6389  | 0.63985  |
| С         | 0.01091  | 2.38402          | -0.09109 | н       | -1.9136                 | -2.31896 | 0.52052  |
| С         | 0.8714   | 3.45569          | -0.28326 | н       | -1.05398                | 2.56174  | -0.00191 |
| С         | 2.25276  | 3.24897          | -0.3967  | н       | 2.91775                 | 4.0932   | -0.53994 |
| С         | 2.74433  | 1.95825          | -0.31213 | н       | 3.81279                 | 1.78999  | -0.39311 |
| С         | 3.98564  | -0.86906         | -0.14008 | н       | 6.83829                 | -0.80188 | 1.75385  |
| С         | 4.84504  | -0.69271         | 0.96033  | н       | 7.84001                 | -1.56455 | -0.39146 |
| С         | 6.21636  | -0.94239         | 0.87732  | Н       | 6.37599                 | -1.86893 | -2.37942 |
| С         | 6.77513  | -1.37132         | -0.32228 | С       | 4.58551                 | -1.30036 | -1.33775 |
| C         | 5,95654  | -1.54635         | -1.43347 |         |                         |          |          |



Figure S13. Plots and energy levels of frontier orbitals of PCZ-s-Mes\*B, PCZ-s-<sup>F</sup>XylB, PBA-s-Mes\*B, PBA-s-<sup>F</sup>XylB, PBA-s-<sup>F</sup>XylBF.





 $<sup>^{13}\</sup>text{C}$  NMR spectrum of  $^F\!XylB\text{-}AQ$  in CDCl\_3





<sup>1</sup>H NMR spectrum of <sup>F</sup>XylB-<sup>F</sup>AQ in CDCl<sub>3</sub>.







<sup>11</sup>B NMR spectrum of **FXylB-FAQ** in CDCl<sub>3</sub>.















HRMS spectrum of PCZ-Br.







HRMS spectrum of **PBA-Br**.



























<sup>13</sup>C NMR spectrum of **PBA-s-Mes\*B** in THF-d<sub>8</sub>.



- 62.11



<sup>11</sup>B NMR spectrum of **PBA-s-Mes\*B** in THF-d<sub>8</sub>.

HRMS spectrum of PBA-s-Mes\*B.









- 59.09

<sup>11</sup>B NMR spectrum of **PBA-s-<sup>F</sup>XylB** in CDCl<sub>3</sub>.



HRMS spectrum of PBA-s-FXylB.



f1 (ppm)





<sup>11</sup>B NMR spectrum of **PBA-s-<sup>F</sup>XylBF** in CDCl<sub>3</sub>.



HRMS spectrum of PBA-s-FXylBF

### **S4. Reference**

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V Marenich, J. Bloino, B. G. Janesko, R.Gomperts, B. Mennucci, H. P. Hratchian, J. V Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F.Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F.Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R.Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.Foresman and D. J. Fox, Gaussian 16 Rev. C.01, Gaussian, Inc., Wallingford CT, Wallingford, CT, **2016**.

- [2] T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592.
- [3] F. Neese, WIREs Comput. Mol. Sci., 2022, 12, 1–15.
- [4] G. M. Sheldrick, Acta Crystallogr. Sect. C, 2015, 71, 3-8.
- [5] G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112–122.