Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

## **Supporting Information**

# The impact of anionic group arrangement on the optical

### properties of the arsenate series.

Yunjie Wang,<sup>a,b#</sup> Zhihao He,<sup>a,b#</sup> Jiafu Ding,<sup>a,b</sup> Jian Cui,<sup>a,b</sup> Fuhong Wan<sup>a,b</sup> Jiajun Li,<sup>a,b</sup> Xin Su<sup>a,b</sup>\* and Yu

Chu<sup>c</sup> \*

(a. School of Physical Science and Technology, Yili Normal University, Yining 835000, China;

b. Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China;

c. Xinjiang Key Laboratory of Functional Crystal Materials CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry Xinjiang Key Laboratory of Electronic Information Materials and Devices 40-1 South Beijing Road, Urumgi 830011, China)

\*Corresponding author E-mail: Xin Su: suxin phy@sina.com; Yu Chu: chuy@ms.xjb.ac.cn

#### Supporting Information Available:

Table S1. Crystal structure information of 14 different metal cation ternary arsenates.

Table S2. Mulliken population analysis of 14 different metal cation ternary arsenates.

**Table S3.** Optical principal axes of ternary arsenates calculated through Efield.

Table S4. Optical static dielectric constants of 14 arsenates in different directions.

**Table S5.** The calculated band gaps, birefringence, and  $\Delta \varepsilon$  of 14 arsenates.

Table S6. Using REDA calculations to determine the contributions of [AsO<sub>4</sub>] and metal cations X

(X=Zn, Cd, Hg) to the birefringence in  $Zn_3(AsO_4)_2$ ,  $Cd_3(AsO_4)_2$ , and  $Hg_3(AsO_4)_2$ .

Table S7. Calculated SHG for LiAsO<sub>4</sub>, NaAsO<sub>4</sub>, Mg<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>, and Ca<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>.

**Figure S1** Phonon dispersion curves of Na<sub>3</sub>AsO<sub>4</sub> (a) and Rb<sub>3</sub>AsO<sub>4</sub> (b).

Figure S2 Ternary arsenate crystal structures A<sub>3</sub>AsO<sub>4</sub>(A= Li, Na, K, Rb, Cs)(a-e); B<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>(B=Be,

Mg, Ca, Sr, Ba)(f-i); D<sup>0</sup>AsO<sub>4</sub>(D<sup>0</sup>=Sc, Y)(j-k); D<sup>10</sup><sub>3</sub> (AsO<sub>4</sub>)<sub>2</sub>(D<sup>10</sup>=Zn, Cd, Hg)(l-n).

Figure S3 Ternary arsenate calculated band structures:  $Li_3AsO_4(a)$ ,  $Na_3AsO_4(b)$ ,  $K_3AsO4(c)$ ,  $Rb_3AsO4(d)$ ,  $Cs_3AsO_4(e)$ ,  $Be_3(AsO_4)_2(f)$ ,  $Mg_3(AsO_4)_2(g)$ ,  $Ca_3(AsO_4)_2(h)$ ,  $Sr_3(AsO_4)_2(i)$ ,  $Ba_3(AsO_4)_2(j)$ ,  $ScAsO_4(k)$ ,  $YAsO_4(l)$ ,  $Zn_3(AsO_4)_2(m)$ ,  $Cd_3(AsO_4)_2(n)$ ,  $Hg_3(AsO_4)_2(o)$ ,  $Band\_sum(p)$ .

Figure S4 Ternary arsenates calculated density of states: Li<sub>3</sub>AsO<sub>4</sub>(a), Na<sub>3</sub>AsO<sub>4</sub>(b), K<sub>3</sub>AsO<sub>4</sub>(c),

 $Rb_{3}AsO4(d),\ Cs_{3}AsO_{4}(e),\ Be_{3}(AsO_{4})_{2}(f),\ Mg_{3}(AsO_{4})_{2}(g),\ Ca_{3}(AsO_{4})_{2}(h),\ Sr_{3}(AsO_{4})_{2}(i),\ Ba_{3}(AsO_{4})_{2}(j),\ Mg_{3}(AsO_{4})_{2}(g),\ Ca_{3}(AsO_{4})_{2}(h),\ Sr_{3}(AsO_{4})_{2}(i),\ Ba_{3}(AsO_{4})_{2}(j),\ Mg_{3}(AsO_{4})_{2}(g),\ Ca_{3}(AsO_{4})_{2}(h),\ Sr_{3}(AsO_{4})_{2}(i),\ Ba_{3}(AsO_{4})_{2}(j),\ Mg_{3}(AsO_{4})_{2}(g),\ Sr_{3}(AsO_{4})_{2}(h),\ Sr_{3}(As$ 

 $ScAsO_4(k)$ ,  $YAsO_4(l)$ ,  $Zn_3(AsO_4)_2(m)$ ,  $Cd_3(AsO_4)_2(n)$ ,  $Hg_3(AsO_4)_2(o)$ , DOS broadening(o).

Figure S5 The HOMO-LUMO gaps of the [AsO<sub>4</sub>] group.

**Figure S6** Comparison between the PDOS (top) and band-resolved  $\chi^{(2)}(pm/V)$  (bottom) of LiAsO<sub>4</sub>(a), NaAsO<sub>4</sub>(b), Mg<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>(c) and Ca<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>(d).

Figure S7 The SHG density of occupied and unoccupied states for  $LiAsO_4(a, b)$ ,  $NaAsO_4(c, d)$ ,  $Mg_3(AsO_4)_2(e, f)$  and  $Ca_3(AsO_4)_2(g, h)$ .

#### Reference

| Compounds                                                        | Space group        | Crystallographi                                            | ICSD / Materials                          |                     |
|------------------------------------------------------------------|--------------------|------------------------------------------------------------|-------------------------------------------|---------------------|
| Compounds                                                        | Space group        | $a, b, c(\text{\AA})$                                      | $\overline{\alpha, \beta, \gamma(\circ)}$ | Project number      |
| Li <sub>3</sub> AsO <sub>4</sub> <sup>[1]</sup>                  | $Pmn2_1$           | a=6.28560, b=5.39020, c=4.96160                            | α=β=γ=90                                  | 75927-ICSD          |
| Na <sub>3</sub> AsO <sub>4</sub>                                 | $Pmn2_1$           | a=7.00636, b=6.03650, c=5.50106                            | α=β=γ=90                                  | mp-756044           |
| K <sub>3</sub> AsO <sub>4</sub> <sup>[2]</sup>                   | Cccm               | a=10.6011, b=11.3521, c=16.9401                            | α=β=γ=90                                  | 412391-ICSD         |
| Rb <sub>3</sub> AsO <sub>4</sub> <sup>[2]</sup>                  | Pnma               | <i>a</i> =11.9959, <i>b</i> =8.66185,<br><i>c</i> =6.37123 | α=β=γ=90                                  | Atomic substitution |
| Cs <sub>3</sub> AsO <sub>4</sub> <sup>[2]</sup>                  | Pnma               | a=12.5427, b=9.02900, c=6.58500                            | α=β=γ=90                                  | 412392-ICSD         |
| Mg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> <sup>[3]</sup>  | <i>I</i> Error!    | a=b=6.80820, c=18.8271                                     | α=β=γ=90                                  | mp-758196           |
| Ca <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> <sup>[4]</sup>  | R3                 | a=b=10.9293, c=38.3498                                     | $\alpha = \beta = 90,$<br>$\gamma = 120$  | mp-530449           |
| Sr <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> <sup>[5]</sup>  | <i>R</i> Error!m   | a=b=5.66440,<br>c=20.1919                                  | $\alpha = \beta = 90,$<br>$\gamma = 120$  | mp-755082           |
| Ba <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> <sup>[5]</sup>  | <i>R</i> Error!m   | a=b=5.85300,<br>c=21.4717                                  | $\alpha = \beta = 90,$<br>$\gamma = 120$  | mp-9783             |
| ScAsO <sub>4</sub> <sup>[6]</sup>                                | $I4_1/amd$         | a=b=6.71020,<br>c=6.11320                                  | α=β=γ=90                                  | 155920-ICSD         |
| <b>YAsO</b> <sub>4</sub> <sup>[7]</sup>                          | $I4_1/amd$         | a=b=6.90400, c=6.28200                                     | α=β=γ=90                                  | 24513-ICSD          |
| Zn <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> <sup>[8]</sup>  | $P2_{1}/c$         | a=6.30610, b=8.65200, c=11.3210                            | α=γ=90,<br>β=92.25                        | 404199-ICSD         |
| Cd <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> <sup>[9]</sup>  | $P2_{1}/c$         | a=9.28500, b=11.9360, c=6.59900                            | α = γ = 90,<br>β = 98.45                  | 14257-ICSD          |
| Hg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> <sup>[10]</sup> | P2 <sub>1</sub> /c | <i>a</i> =10.0049, <i>b</i> =11.7555,<br><i>c</i> =6.53740 | α=γ=90,<br>β=99.6870                      | 72527-ICSD          |

**Table S1.** Crystal structure information of 14 different metal cation ternary arsenates.

**Table S2.** Mulliken population analysis of 14 different metal cation ternary arsenates.

| Compounds                        | Species | S     | р    | d | Total | Charge(e) | Bond         | Population         | Length<br>(nm) |
|----------------------------------|---------|-------|------|---|-------|-----------|--------------|--------------------|----------------|
|                                  | Li      | -0.05 | -    | - | -0.05 | 1.05      | 0.4          | 0.80               | 1 672          |
| Li <sub>3</sub> AsO <sub>4</sub> | As      | 1.62  | 1.95 | - | 3.57  | 1.43      | O-As<br>O-Li | 0.80               | 1.673          |
|                                  | 0       | 1.89  | 5.27 | - | 7.16  | -1.16     |              | 0.01               |                |
| Na <sub>3</sub> AsO <sub>4</sub> | Na      | 2.26  | 6.09 | - | 8.35  | 0.65      | O-As<br>O-Na | As 0.74<br>Na 0.04 | 1.681<br>2.372 |
|                                  | As      | 1.07  | 2.09 | - | 3.16  | 1.84      |              |                    |                |
|                                  | 0       | 1.87  | 5.08 | - | 6.95  | -0.95     |              |                    |                |
|                                  | Κ       | 2.20  | 6.30 | - | 8.50  | 0.50      | 0            | 0.04               | 1 (()          |
| K3AsO4                           | As      | 1.14  | 2.14 | - | 3.28  | 1.72      | O-As<br>O-K  | 0.84               | 1.664          |
|                                  | 0       | 1.87  | 5.07 | - | 6.94  | -0.94     |              | 0.06               | 2.607          |
|                                  | Rb      | 2.21  | 5.98 | - | 8.19  | 0.81      | O-As         | 0.77               | 1.680          |
| KD3ASU4                          | As      | 1.23  | 2.12 | - | 3.35  | 1.65      | O-Rb         | 0.19               | 2.732          |

|                                                  | Ο  | 1.88 | 5.08 | -    | 6.96  | -0.96 |                 |      |         |
|--------------------------------------------------|----|------|------|------|-------|-------|-----------------|------|---------|
|                                                  | Cs | 2.22 | 6.02 | -    | 8.24  | 0.76  | $\mathbf{O}$ As | 0.74 | 1 691   |
| Cs <sub>3</sub> AsO <sub>4</sub>                 | As | 1.10 | 2.08 |      | 3.19  | 1.81  | O-As            | 0.74 | 1.004   |
|                                                  | Ο  | 1.89 | 5.09 | -    | 6.97  | -0.97 | 0-05            | 0.15 | 2.947   |
|                                                  | Mg | 2.37 | 6.51 | -    | 8.88  | 1.12  | OAc             | 0.64 | 1 667   |
| Mg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | As | 0.86 | 1.98 | -    | 2.84  | 2.16  | $O M_{\alpha}$  | 0.04 | 2.643   |
|                                                  | Ο  | 1.86 | 5.11 | -    | 6.97  | -0.97 | 0-wig           | 0.07 | 2.045   |
|                                                  | Ca | 2.22 | 6.00 | 0.47 | 8.69  | 1.31  | $O_{-}As$       | 0.65 | 1 6/1   |
| $Ca_3(AsO_4)_2$                                  | As | 1.01 | 1.92 | -    | 2.93  | 2.07  | O-As            | 0.03 | 2 509   |
|                                                  | 0  | 1.88 | 5.13 | -    | 7.01  | -1.01 | 0-Ca            | 0.10 | 2.307   |
|                                                  | Sr | 2.22 | 6.00 | 0.55 | 8.77  | 1.23  | O-As            | 0.63 | 1 676   |
| Sr <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | As | 0.99 | 1.96 | -    | 2.94  | 2.06  | O-As<br>O-Sr    | 0.03 | 2 864   |
|                                                  | 0  | 1.86 | 5.10 | -    | 6.96  | -0.96 | 0.51            | 0.15 | 2.004   |
|                                                  | Ba | 2.22 | 6.00 | 0.57 | 8.78  | 1.22  | O-As            | 0.62 | 1 665   |
| $Ba_3(AsO_4)_2$                                  | As | 0.98 | 1.95 | -    | 2.93  | 2.07  | O-Ba            | 0.02 | 2 594   |
|                                                  | Ο  | 1.88 | 5.09 | -    | 6.97  | -0.97 | 0 Du            | 0.10 | 2.391   |
|                                                  | Sc | 0.30 | 0.23 | 1.14 | 1.66  | 1.34  | O-As            | 0.58 | 1 666   |
| ScAsO <sub>4</sub>                               | As | 0.82 | 1.99 | -    | 2.81  | 2.19  | O-Sc            | 0.25 | 2.297   |
|                                                  | 0  | 1.86 | 5.02 | -    | 6.88  | -0.88 | 0.50            | 0.20 | 2.27    |
|                                                  | Y  | 0.27 | 0.11 | 1.25 | 1.63  | 1.37  | O-As            | 0.58 | 1.667   |
| YAsO4                                            | As | 0.83 | 1.99 | -    | 2.82  | 2.18  | O-Y             | 0.33 | 2.316   |
|                                                  | 0  | 1.85 | 5.03 | -    | 6.89  | -0.89 |                 | 0.00 | 2.010   |
|                                                  | Zn | 0.39 | 0.64 | 9.99 | 11.02 | 0.98  | O-As            | 0.69 | 1.657   |
| $Zn_3(AsO_4)_2$                                  | As | 0.93 | 1.92 | -    | 2.86  | 2.14  | O-Zn            | 0.35 | 2.035   |
|                                                  | 0  | 1.86 | 5.04 | -    | 6.90  | -0.90 |                 |      |         |
|                                                  | Cd | 0.35 | 0.53 | 9.99 | 10.88 | 1.12  | O-As            | 0.62 | 1.666   |
| $Cd_3(AsO_4)_2$                                  | As | 0.95 | 1.96 | -    | 2.91  | 2.09  | O-Cd            | 0.34 | 2.158   |
|                                                  | 0  | 1.88 | 5.06 | -    | 6.94  | -0.94 |                 | 0.0  | 2.100   |
|                                                  | Hg | 0.78 | 0.46 | 9.85 | 11.10 | 0.90  | O-As            | 0.72 | 1.634   |
| Hg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | As | 0.87 | 1.93 | -    | 2.81  | 2.19  | O-Hg            | 0.48 | 1.975   |
|                                                  | 0  | 1.88 | 5.00 | -    | 6.88  | -0.88 | 0 118           | 0110 | 100 / 0 |

 Table S3. Optical principal axes of ternary arsenates calculated through Efield.

Ξ

| Compounds                                        |                    | Optical spindle     |                      |
|--------------------------------------------------|--------------------|---------------------|----------------------|
| Compounds                                        | X                  | У                   | Ζ                    |
| Li <sub>3</sub> AsO <sub>4</sub>                 | (0, 0.19, 0)       | (0.16, 0, 0)        | (0, 0, 0.20)         |
| Na <sub>3</sub> AsO <sub>4</sub>                 | (0, 0.16, 0)       | (0.14, 0, 0)        | (0, 0, 0.18)         |
| K <sub>3</sub> AsO <sub>4</sub>                  | (0, 0, 0.06)       | (0.09, 0, 0)        | (0, 0.08, 0)         |
| Rb <sub>3</sub> AsO <sub>4</sub>                 | (0, 0, 0.16)       | (0, 0.16, 0)        | (0.08, 0, 0)         |
| Cs <sub>3</sub> AsO <sub>4</sub>                 | (0, 0, 0.15)       | (0, 0.11, 0)        | (0.08, 0, 0)         |
| Mg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | (0, 0, 0.05)       | (0, 0.15, 0)        | (0.15, 0, 0)         |
| $Ca_3(AsO_4)_2$                                  | (0.03, 0.03, 0.03) | (-0.10, 0.08, 0.02) | (-0.03, -0.07, 0.10) |
| Sr <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | (0.21, 0.10, 0)    | (0, 0.18, 0)        | (0, 0, 0.05)         |
| $Ba_3(AsO_4)_2$                                  | (0.20, 0.10, 0)    | (0, 0.17, 0)        | (0, 0, 0.05)         |
| ScAsO <sub>4</sub>                               | (0.15, 0, 0)       | (0, 0.15, 0)        | (0, 0, 016)          |
| YAsO4                                            | (0, -0.11, 0)      | (0.01, 0, -0.09)    | (0.15, 0, 0.01)      |
| $Zn_3(AsO_4)_2$                                  | (0, -0.11, 0)      | (0.01, 0, -0.09)    | (0.15, 0, 0.01)      |

| $Cd_3(AsO_4)_2$                                  | (0, 0.08, 0)      | (-0.09, 0, -0.11) | (-0.06, 0, 0.11) |
|--------------------------------------------------|-------------------|-------------------|------------------|
| Hg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | (-0.10, 0, -0.05) | (0, 0.09, 0)      | (-0.01, 0, 0.15) |

| Compounds -                                      |                | Optical Permittivity |            |       |  |  |  |  |
|--------------------------------------------------|----------------|----------------------|------------|-------|--|--|--|--|
| Compounds                                        | 8 <sub>1</sub> | ε2                   | <b>E</b> 3 | Δε    |  |  |  |  |
| Li <sub>3</sub> AsO <sub>4</sub>                 | 2.921          | 2.912                | 2.930      | 0.018 |  |  |  |  |
| Na <sub>3</sub> AsO <sub>4</sub>                 | 2.606          | 2.603                | 2.591      | 0.015 |  |  |  |  |
| K3AsO4                                           | 2.797          | 2.793                | 2.808      | 0.015 |  |  |  |  |
| Rb <sub>3</sub> AsO <sub>4</sub>                 | 2.882          | 2.867                | 2.867      | 0.015 |  |  |  |  |
| Cs <sub>3</sub> AsO <sub>4</sub>                 | 3.080          | 3.071                | 3.079      | 0.009 |  |  |  |  |
| $Mg_3(AsO_4)_2$                                  | 3.145          | 3.268                | 3.268      | 0.123 |  |  |  |  |
| $Ca_3(AsO_4)_2$                                  | 3.214          | 3.223                | 3.223      | 0.009 |  |  |  |  |
| Sr <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | 3.447          | 3.447                | 3.489      | 0.042 |  |  |  |  |
| $Ba_3(AsO_4)_2$                                  | 3.620          | 3.620                | 3.662      | 0.042 |  |  |  |  |
| ScAsO <sub>4</sub>                               | 3.819          | 3.819                | 4.479      | 0.660 |  |  |  |  |
| YAsO <sub>4</sub>                                | 3.370          | 3.852                | 3.370      | 0.482 |  |  |  |  |
| $Zn_3(AsO_4)_2$                                  | 3.747          | 3.674                | 3.732      | 0.073 |  |  |  |  |
| $Cd_3(AsO_4)_2$                                  | 3.571          | 3.596                | 3.680      | 0.109 |  |  |  |  |
| Hg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | 4.203          | 4.349                | 4.463      | 0.260 |  |  |  |  |

Table S4. Optical static dielectric constants of 14 arsenates in different directions.

**Table S5.** The calculated band gaps, birefringence, and  $\Delta \epsilon$  of 14 arsenates.

| Commonweda                                              | Band g | gap (eV) | Am (@ 10(4 mm)                     | 4.0   |  |
|---------------------------------------------------------|--------|----------|------------------------------------|-------|--|
| Compounds                                               | GGA    | LDA      | $\Delta \Pi$ ( <i>@</i> 1004 IIII) | ЗΣ    |  |
| Li <sub>3</sub> AsO <sub>4</sub>                        | 4.702  | 4.749    | 0.005                              | 0.018 |  |
| Na <sub>3</sub> AsO <sub>4</sub>                        | 3.348  | 3.404    | 0.005                              | 0.015 |  |
| K <sub>3</sub> AsO <sub>4</sub>                         | 3.417  | 3.417    | 0.005                              | 0.015 |  |
| Rb <sub>3</sub> AsO <sub>4</sub>                        | 3.324  | 3.548    | 0.004                              | 0.015 |  |
| Cs <sub>3</sub> AsO <sub>4</sub>                        | 3.413  | 3.644    | 0.003                              | 0.009 |  |
| $Mg_3(AsO_4)_2$                                         | 3.575  | 3.814    | 0.035                              | 0.123 |  |
| $Ca_3(AsO_4)_2$                                         | 4.256  | 4.369    | 0.003                              | 0.009 |  |
| $Sr_3(AsO_4)_2$                                         | 4.476  | 4.775    | 0.011                              | 0.042 |  |
| <b>Ba</b> <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | 4.366  | 4.729    | 0.011                              | 0.042 |  |
| ScAsO <sub>4</sub>                                      | 4.229  | 4.443    | 0.170                              | 0.660 |  |
| YAsO4                                                   | 4.532  | 4.611    | 0.130                              | 0.482 |  |
| $Zn_3(AsO_4)_2$                                         | 2.287  | 2.135    | 0.017                              | 0.073 |  |
| $Cd_3(AsO_4)_2$                                         | 2.260  | 2.082    | 0.030                              | 0.109 |  |
| Hg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub>        | 1.591  | 1.500    | 0.066                              | 0.260 |  |

Table S6. Using REDA calculations to determine the contributions of [AsO4] and metal cations X

(X=Zn, Cd, Hg) to the birefringence in  $Zn_3(AsO_4)_2$ ,  $Cd_3(AsO_4)_2$ , and  $Hg_3(AsO_4)_2$ .

| Compounds                                        | ξ-AsO <sub>4</sub> | ξ-Χ    | AsO <sub>4</sub> - contribute | X- contribute |
|--------------------------------------------------|--------------------|--------|-------------------------------|---------------|
| Zn <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | 0.0068             | 0.0144 | 32.14%                        | 67.86%        |
| Cd <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | 0.0039             | 0.0042 | 48.09%                        | 51.91%        |
| Hg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> | 0.0087             | 0.0252 | 25.75%                        | 74.25%        |

Table S7. Calculated SHG for LiAsO<sub>4</sub>, NaAsO<sub>4</sub>, Mg<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>, and Ca<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>.

| Compounds                                        | <i>d<sub>ii</sub> (pm/V)</i> |                        |                        |                        |                        |                        |                  |       |
|--------------------------------------------------|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------|-------|
| Compounds                                        | <i>d</i> <sub>11</sub>       | <i>d</i> <sub>14</sub> | <i>d</i> <sub>15</sub> | <i>d</i> <sub>22</sub> | <i>d</i> <sub>24</sub> | <i>d</i> <sub>33</sub> | d <sub>eff</sub> | ×KDP  |
| Li <sub>3</sub> AsO <sub>4</sub>                 |                              |                        | 0.414                  |                        | 0.581                  | 0.911                  | 0.721            | 1.849 |
| Na <sub>3</sub> AsO <sub>4</sub>                 |                              |                        | 0.602                  |                        | 0.707                  | 1.622                  | 0.985            | 2.526 |
| Mg <sub>3</sub> (AsO <sub>4</sub> ) <sub>2</sub> |                              | 0.424                  | 0.267                  |                        |                        |                        | 0.398            | 1.021 |
| $Ca_3(AsO_4)_2$                                  | 0.007                        |                        | 0.224                  | 0.144                  |                        | 1.053                  | 0.518            | 1.328 |



Figure S1 Phonon dispersion curves of Na<sub>3</sub>AsO<sub>4</sub> (a) and Rb<sub>3</sub>AsO<sub>4</sub> (b).





Figure S2 Ternary arsenate crystal structures  $A_3AsO_4(A = Li, Na, K, Rb, Cs)(a-e)$ ;  $B_3(AsO_4)_2(B = Be, Mg, Ca, Sr, Ba)(f-j)$ ;  $D^0AsO_4(D^0 = Sc, Y)(k-l)$ ;  $D^{10}_3 (AsO_4)_2(D^{10} = Zn, Cd, Hg)(m-o)$ .





Figure S3 Ternary arsenate calculated band structures:  $Li_3AsO_4(a)$ ,  $Na_3AsO_4(b)$ ,  $K_3AsO4(c)$ ,  $Rb_3AsO4(d)$ ,  $Cs_3AsO_4(e)$ ,  $Be_3(AsO_4)_2(f)$ ,  $Mg_3(AsO_4)_2(g)$ ,  $Ca_3(AsO_4)_2(h)$ ,  $Sr_3(AsO_4)_2(i)$ ,  $Ba_3(AsO_4)_2(j)$ ,  $ScAsO_4(k)$ ,  $YAsO_4(l)$ ,  $Zn_3(AsO_4)_2(m)$ ,  $Cd_3(AsO_4)_2(n)$ ,  $Hg_3(AsO_4)_2(o)$ ,  $Band_sum(p)$ .





Figure S4 Ternary arsenates calculated density of states:  $Li_3AsO_4(a)$ ,  $Na_3AsO_4(b)$ ,  $K_3AsO4(c)$ ,  $Rb_3AsO4(d)$ ,  $Cs_3AsO_4(e)$ ,  $Be_3(AsO_4)_2(f)$ ,  $Mg_3(AsO_4)_2(g)$ ,  $Ca_3(AsO_4)_2(h)$ ,  $Sr_3(AsO_4)_2(i)$ ,  $Ba_3(AsO_4)_2(j)$ ,  $ScAsO_4(k)$ ,  $YAsO_4(l)$ ,  $Zn_3(AsO_4)_2(m)$ ,  $Cd_3(AsO_4)_2(n)$ ,  $Hg_3(AsO_4)_2(o)$ , DOS broadening(p).



HOMO-LUMO gaps





Figure S6 Comparison between the PDOS (top) and band-resolved  $\chi^{(2)}(pm/V)$  (bottom) of LiAsO<sub>4</sub>(a), NaAsO<sub>4</sub>(b), Mg<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>(c) and Ca<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>(d).



Figure S7 The SHG density of occupied and unoccupied states for  $LiAsO_4(a, b)$ ,  $NaAsO_4(c, d)$ ,  $Mg_3(AsO_4)_2(e, f)$  and  $Ca_3(AsO_4)_2(g, h)$ .

#### Reference

- [1] Elfakir A., Wallez G., Quarton M., Phase Transitions, 1993, 45(4), 281-288.
- [2] Emmerling F., Idilbi M., Röhr C., ChemInform, 2002, 33(36): 599-604.
- [3] Krishnamachari N., Calvo C., Acta Cryst. B, 1973, 29(11), 2611-2613.
- [4] Gopal R., Calvo C., Can. J. Chem., 1971, 49(7), 1036-1046.
- [5] Hadenfeldt C., Terschüren H. U., Z. Anorg. Allg. Chem., 1991, 597(1), 69-78.
- [6] Schmidt M., Müller U., Cardoso Gil R., Z. Anorg. Allg. Chem., 2005, 631(6-7), 1154-1162.
- [7] Strada M., Schwendimann G., Gazz. Chim. Ital., 1934, 64, 662-674.
- [8] Frerichs D., Park C. H., Müller-Buschbaum H., Z. Naturforsch. B, 1996, 51(3), 333-337.
- [9] Engel G., Klee W. E., Z. Kristallogr.-Cryst. Mater., 1970, 132(1-6), 332-339.
- [10] Larsson A. K., Lidin S., Stålhandske C., Acta Cryst. C, 1993, 49(4), 784-786.