

Supporting Information

Simultaneous electrodeposition of manganese oxide/poly(o-aminophenol) composites as the electrode material for aqueous electrochemical energy storage

Shaotong Pei^{a,*}, Bo Lan^a, Xueting Bai^a, Yunpeng Liu^a, Xinlan Yi^b, Haichao Sun^a, Weiqi Wang^a, Mianxiao Wu^a, Chao Wang^{c,d,*}

a. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding, Hebei 071003, China

b. Economic management Department, North China Electric Power University, Baoding, Hebei 071003, China

c. School of Renewable Energy, Inner Mongolia University of Technology, Ordos, Inner Mongolia 017010, China

d. Inner Mongolia Key Laboratory of New Energy and Energy Storage Technology, Hohhot 010051, China

Corresponding authors:

peishaotong@ncepu.edu.cn
cwang@imut.edu.cn

Contents

- 1. Experimental**
- 2. Electrochemistry**
- 3. XPS**
- 4. SEM**
- 5. Comparison of specific capacity and cyclic stability**
- 6. References**

1. Experimental

Chemicals

The following reagents were used without further purification: Manganese sulfate ($\text{MnSO}_4 \cdot \text{H}_2\text{O}$, AR, 99.0%, FuChen (Tianjin) Chemical Reagents Co., Ltd.), *o*-aminophenol ($\text{C}_6\text{H}_7\text{NO}$, AR, 99%, Shanghai Aladdin Biochemical Technology Co., Ltd.), concentrated sulfuric acid (H_2SO_4 , AR, 98.0%, Shanghai HaoHong Bio-Pharmaceutical Technology Co., Ltd.), zinc sulfate (ZnSO_4 , AR, 99.8%, Shanghai HaoHong Bio-Pharmaceutical Technology Co., Ltd.), potassium chloride (KCl , AR, 99.5%, FuChen (Tianjin) Chemical Reagents Co., Ltd.), potassium ferricyanide ($\text{K}_3[\text{Fe}(\text{CN})_6]$, AR, 99.5%, Tianjin RuiJinTe Chemicals Co., Ltd.), ammonium sulfate ($(\text{NH}_4)_2\text{SO}_4$, AR, 99.1%, Shanghai BiDe Pharmaceutical Technology Co., Ltd.), carbon cloth (SCC130, Suzhou ShengErNuo Technology Co., Ltd.) and doubly distilled water.

Instrumentation

X-ray photoelectron spectroscopy was performed on Shimadzu/Krayos AXIS Ultra DLD at room temperature and ultra-high vacuum (UHV) conditions. The full-spectrum acquisition voltage was 15 kV, filament current was 5 mA, and the test pass energy Pass Energy was 160eV; the fine-spectrum voltage was 15 kV, filament current was 10 mA, and the test pass energy Pass Energy was 40eV. Charge correction was performed using C 1s=284.80 eV binding energy as the energy standard. X-ray diffraction (XRD) was performed on X-ray powder diffractometer (Rigaku SmartLab SE, Japan) equipped with a Cu target ($\lambda = 0.154$ nm). Field emission scanning electron microscope (ZEISS Sigma 300, Germany) equipped with electron diffraction spectroscope was used to observe the morphology and elemental distribution of the film.

Electrochemistry

The electrochemical measurements are carried out at room temperature using CHI760E electrochemical workstation, and EIS was recorded in the frequency range of 10^6 to 0.01 Hz under potential amplitude 5 mV. The specific capacity (C , mAh g^{-1}) was calculated from the discharge branch of the GCD curve by the following formula.

$$C_{s,GCD} = \frac{It}{m} \quad (1)$$

Where I (mA) is the discharge current, t (h) is the discharge time, and m (g) is the mass of the active material on the electrode. The specific capacity (C , mAh g^{-1}) is also calculated based on the integrated charge (Q , C) obtained from the CV cathodic scan by the following formula.

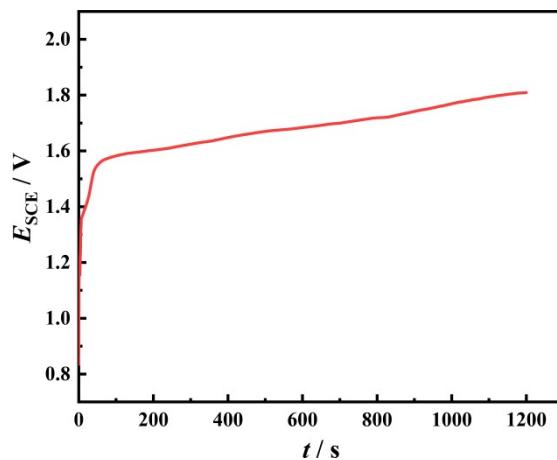
$$C_{s,CV} = \frac{Q}{3.6m} \quad (2)$$

The capacitance of the MnO_x/PoAP two-electrode energy storage system was calculated from the GCD curve using Equation (3).

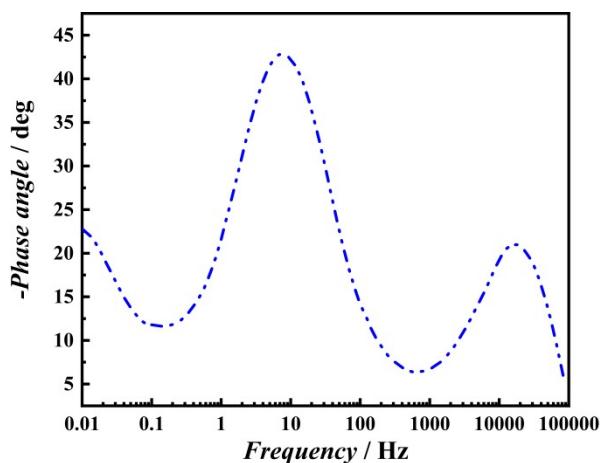
$$C_{cell} = \frac{It}{2m \times \Delta V} \quad (3)$$

Where $C_{cell}(\text{F g}^{-1})$ is the specific capacity based on the mass of electrochemically active material,

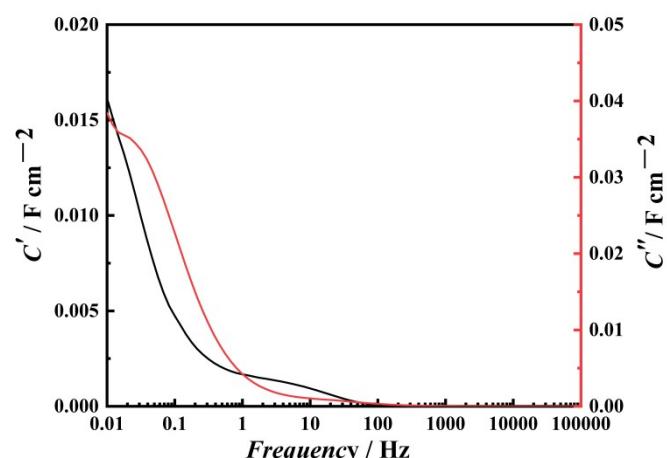
I is the current in A, and $\Delta V(V)$ is the potential window.

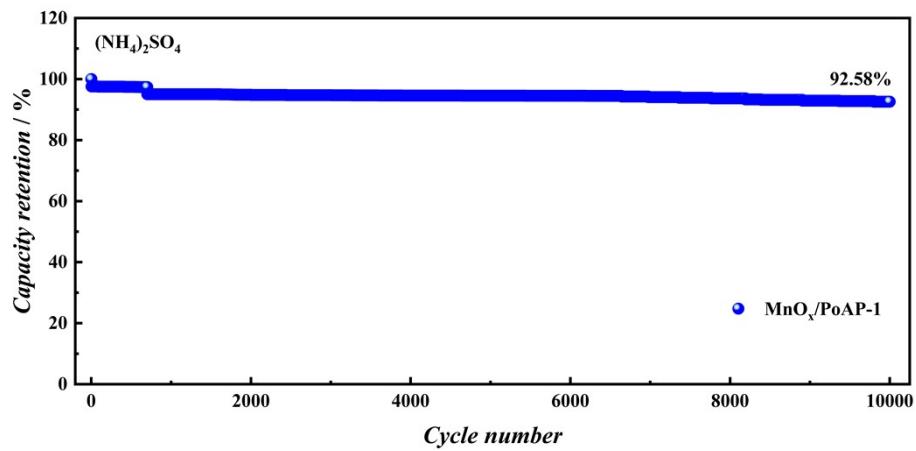

The energy density and power density of the solid-state supercapacitor were calculated using Equations (4) and (5).

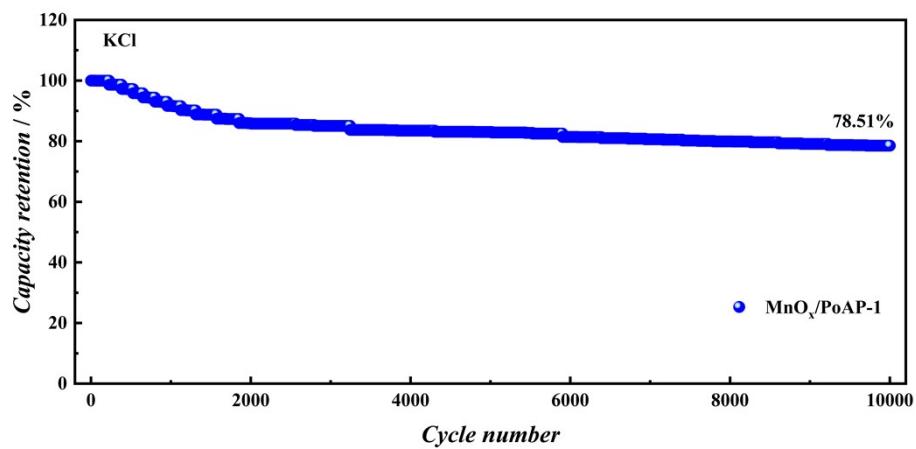
$$E = \frac{1}{2 \times 3.6 \times 2m} \int_0^t V dt \quad (4)$$


$$P = \frac{E \times 3600}{t} \quad (5)$$

where $E (Wh kg^{-1})$ and $P (W kg^{-1})$ correspond to energy density and power density, respectively.


2. Electrochemistry


Figure S1. E - t curve for electropolymerization in 10 mM MnSO₄ + 1 mM PoAP + 1 M H₂SO₄ at 0.014 A cm⁻². The working electrode is CC.


Figure S2. Bode plot of symmetric supercapacitor with 2 M (NH₄)₂SO₄ aqueous electrolyte.

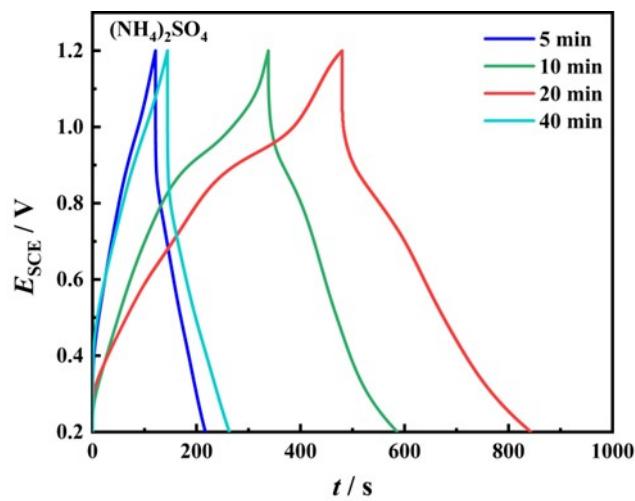

Figure S3. Plots of C' and C'' vs. f of the symmetric supercapacitor with 2 M (NH₄)₂SO₄ aqueous electrolyte.

Figure S4. The cycling stability of $\text{MnO}_x/\text{PoAP-1}$ at 10 A g^{-1} in $2 \text{ M} (\text{NH}_4)_2\text{SO}_4$.

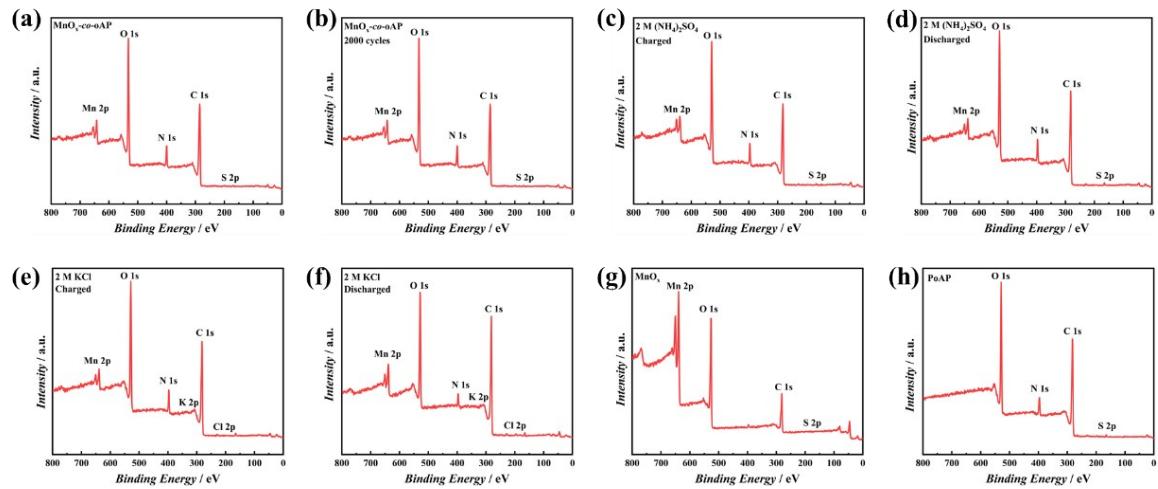


Figure S5. The cycling stability of $\text{MnO}_x/\text{PoAP-1}$ at 10 A g^{-1} in $2 \text{ M} \text{KCl}$.

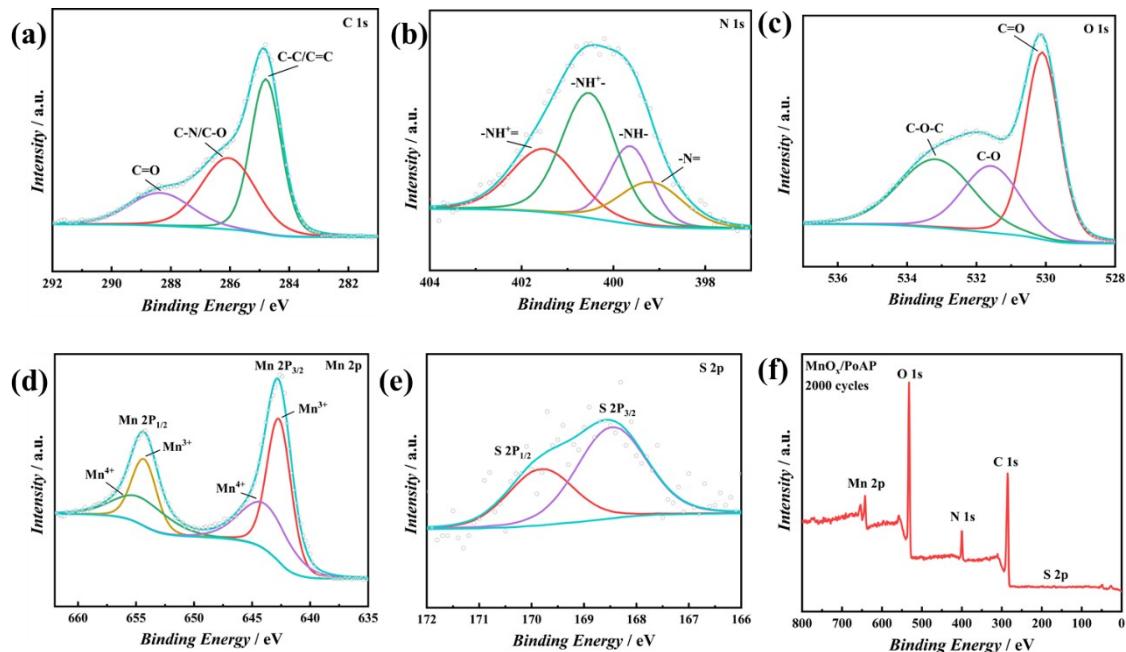


Figure S6. GCD profiles of MnO_x/PoAP obtained by electrochemical deposition at different times for 14 mA cm^{-2} .

3. XPS

Figure S7. (a) XPS survey spectrum of the MnO_x/PoAP-1; XPS survey spectrum of the MnO_x/PoAP-1 under various conditions (b) after charge-discharge 2000 cycles in 2 M (NH₄)₂SO₄ (c) Charged to 1.2 V_{SCE} in 2 M (NH₄)₂SO₄ (d) Discharged to 0.2 V_{SCE} in 2 M (NH₄)₂SO₄ (e) Charged to 1.0 V_{SCE} in 2 M KCl (f) Discharged to -0.5 V_{SCE} in 2 M KCl; XPS survey spectrum of the (g) MnO_x and (h) PoAP.

Figure S8. Deconvoluted high-resolution XPS spectra of the (a) C 1s region; (b) N 1s region; (c) O 1s region; (d) S 2p region; (e) Mn 2p region of the as-deposited MnO_x/PoAP; (f) after charge-discharge 2000 cycles in 2 M (NH₄)₂SO₄.

Table S1. Components of the deconvoluted C 1s XPS spectra of the MnO_x/PoAP-1.

	284.65 eV C-C/C=C	286.15 eV C-N/C-O	288.39 eV C=O
1 M H ₂ SO ₄	37.83	45.05	17.12

Table S2. Components of the deconvoluted N 1s XPS spectra of the MnO_x/PoAP-1.

	399.40 eV -N=	400.14 eV -NH-	400.80 eV -NH ⁺ -	401.67 eV -NH ⁺ =
1 M H ₂ SO ₄	30.86	36.33	21.53	11.28

Table S3. Components of the deconvoluted O 1s XPS spectra of the MnO_x/PoAP-1.

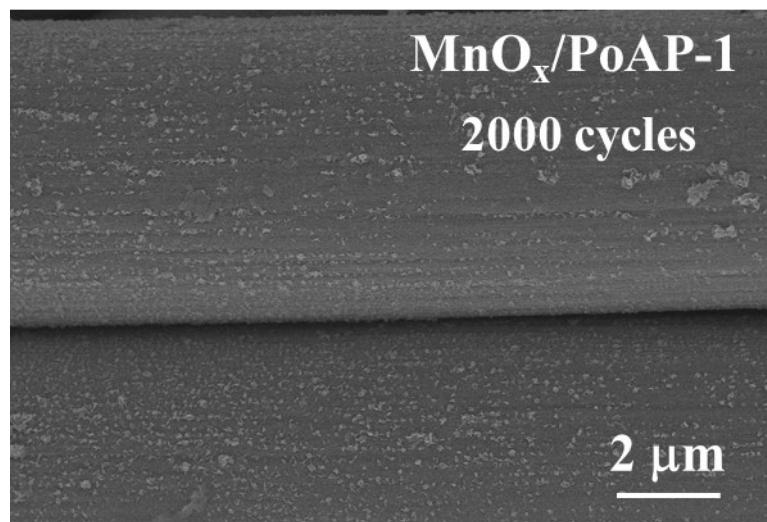
	532.16 eV C=O	533.33 eV C-O	534.17 eV C-O-C
1 M H ₂ SO ₄	72.38	14.46	13.17

Table S4. Components of the deconvoluted Mn 2p XPS spectra of the MnO_x/PoAP-1.

	642.17 eV Mn ³⁺	644.97 eV Mn ⁴⁺	653.76 eV Mn ³⁺	654.70 eV Mn ⁴⁺
1 M H ₂ SO ₄	46.75	22.49	16.92	13.84

Table S5. Components of the deconvoluted N 1s XPS spectra of the MnO_x/PoAP-1 charged or discharged in different solutions.

	399.51 eV	400.03 eV	400.70 eV	401.12 eV
	-N= (%)	-NH- (%)	-NH⁺- (%)	-NH⁺= (%)
2 M (NH₄)₂SO₄				
Charged	19.86	29.51	37.07	13.55
2 M (NH₄)₂SO₄				
Discharged	2.58	57.03	34.68	5.71
2 M KCl				
Charged	4.08	7.3	54.92	33.7
2 M KCl				
Discharged	15.41	48.71	27.91	7.97


Table S6. Components of the deconvoluted O 1s XPS spectra of the MnO_x/PoAP-1 charged or discharged in different solutions.

	530.10 eV Mn-O-Mn (%)	532.10 eV C=O/Mn-OH (%)	533.51 eV C-O (%)	534.21 eV C-O-C (%)
2 M (NH₄)₂SO₄ Charged	7.64	50.48	27.86	14.02
2 M (NH₄)₂SO₄ Discharged	3.64	56.94	31.54	7.88
2 M KCl Charged	15.49	42.19	30.73	11.59
2 M KCl Discharged	4.77	43.76	36.94	14.53

Table S7. Components of the deconvoluted N 1s XPS spectra of the MnO_x/PoAP-1 charged or discharged in different solutions.

	642.33 eV	644.83 eV	654.12 eV	655.71 eV
	Mn³⁺ (%)	Mn⁴⁺ (%)	Mn³⁺ (%)	Mn⁴⁺ (%)
2 M (NH₄)₂SO₄				
Charged	48.06	18.41	19.5	14.03
2 M (NH₄)₂SO₄				
Discharged	48.39	22.04	26.32	3.25
2 M KCl				
Charged	39.47	25.97	9.72	24.83
2 M KCl				
Discharged	45.09	25.26	17.44	12.21

4. SEM

Figure S9. The SEM images of the MnO_x/PoAP-1 after GCD cycling at 10 A g⁻¹ for 2000 cycles in 2 M (NH₄)₂SO₄.

5. Comparison of specific capacity and cyclic stability

Table S8. Comparison of specific capacity and cycling stability of conducting polymer/metal oxide composites.

<i>Material</i>	<i>Electrolyte</i>	<i>Specific capacity</i>	<i>Cyclic stability</i>	<i>Ref.</i>
MnO_x/PoAP	2 M (NH ₄) ₂ SO ₄	100.88 mAh g^{-1} at 1 A g^{-1}	92.58% after 10000 cycles	This work
	2 M KCl	166.94 mAh g^{-1} at 1 A g^{-1}	78.51% after 10000 cycles	
MnO_x(AAIC)	2 M (NH ₄) ₂ SO ₄	175 F g^{-1} at 1 A g^{-1}	89% after 1000 cycles	[1]
	0.5 M H ₂ SO ₄	77 F g^{-1} at 1 mA cm^{-2}	75% after 2000 cycles	
a-O				[2]
V₂O₅@PPy	1 M Na ₂ SO ₄	307 F g^{-1} at 1 A g^{-1}	82% after 1000 cycles	[3]

6. References

- [1] S. G. Krishnan, H. D. Pham, C. Padwal, H. Weerathunga, X. Wang, K. Mahale and D. Dubal, Journal of Power Sources, 2023, 570, 232994.
- [2] P. H. Patil, V. V. Kulkarni, T. D. Dongale and S. A. Jadhav, Journal of Composites Science, 2023, 7, 167.
- [3] Y. Liang, Z. Wei, X. Zhang and R. Wang, ES Energy & Environment, 2022, 18, 101-110.