Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Design of moderate-pressure superconductivity in the ternary hydride system

Contents

Xue Li^{a*}, Nan Wang^a, Yuan Ma^c, JingKai Bi^b, Hanyu Liu^{c*}

a. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
b. Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450001, China
c. Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China

Contents

- 1. Figure S1. The convex hulls for LiTiH₆, LiZrH₆, and LiHfH₆ at 50 GPa.
- 2. Figure S2. Calculated phonon spectrum of newly predicted ABH₃ under different pressure.
- 3. Figure S3. Calculated phonon spectrum of newly predicted ABH₆ under different pressure.
- 4. Figure S4. Calculated phonon spectrum of newly predicted AB₂H₆ under different pressure.
- 5. Figure S5. The superconducting energy gaps Δnk at different temperatures for LiTiH₆, LiZrH₆, and LiHfH₆ at 50 GPa.
- **6.** Table S1. Key superconducting parameters for dynamically stable ABH₃, ABH₆ and AB₂H₆ at different pressures.
- Table S2. Possible reaction routes and formation enthalpies for LiTiH₆, LiZrH₆ and LiHfH₆ at 50 GPa.
- 8. Table S3. Computed superconducting parameters for BeZrH₃ and MgHCu₃.

Figure S1. The convex hulls for LiTiH₆, LiZrH₆, and LiHfH₆ at 50 GPa.

Figure S2. Calculated phonon spectrum of newly predicted ABH₃ under different pressure.

Figure S3. Calculated phonon spectrum of newly predicted ABH₆ under different pressure.

Figure S4. Calculated phonon spectrum of newly predicted AB₂H₆ under different pressure.

Figure S5. The superconducting energy gaps Δ_{nk} at different temperatures for LiTiH₆, LiZrH₆, and LiHfH₆ at 50 GPa. We have used the Wannier interpolation technique to calculate electronphonon coupling superconductivity. The electronic and phononic states are interpolated onto fine k- and q-grids of 24x24x24, and the double Dirac δ functions for electrons and phonons are smeared out by Gaussian functions with widths of 50 and 0.5 meV, respectively. The

Matsubara frequency is truncated at $\omega_{c=3.0}$ eV, which is about twelve times the highest phonon excitation energy. The screening Coulomb potential μ * is set to be 0.1.

Phase	Pressure (GPa)	λ	ω_{\log}	$T_{\rm c}({\rm K})$
BeZrH ₃	50	1.9	297	41
BeHfH ₃	50	1.8	292	39
MgSrH ₃	0	1.8	252	34
MgSrH ₃	10	1.3	290	30
MgSrH ₃	50	0.7	363	14
LiCsH ₃	50	1.0	334	26
LiZrH ₃	50	0.9	323	21
${\rm LiHfH_3}$	50	1.0	276	20
MgBaH ₃	0	1.5	160	19
MgBaH ₃	10	1.5	162	19
LiYH ₃	0	0.6	335	8
LiYH ₃	10	0.5	389	5
LiYH ₃	50	0.3	452	0.2
LiLaH ₃	0	0.4	255	3
LiLaH ₃	10	0.4	279	1
LiLaH ₃	50	0.4	281	2
LiScH ₃	50	0.3	627	0.4
LiTiH ₆	50	2.3	547	87
LiZrH ₆	10	3.0	324	58
LiZrH ₆	50	1.7	637	82
LiHfH ₆	0	3.5	196	37
LiHfH ₆	10	2.8	333	58

Table S1. Key superconducting parameters for dynamically stable ABH₃, ABH₆ and AB₂H₆ at different pressures

LiHfH ₆	50	1.6	629	80
MgScH ₆	50	1.7	410	55
MgYH ₆	0	2.8	173	31
MgYH ₆	10	2.0	271	40
MgYH ₆	50	1.4	446	49
NaZrH ₆	50	1.2	396	37
CaYH ₆	0	1.4	324	35
CaYH ₆	10	1.0	426	33
CaYH ₆	50	0.9	450	30
NaHfH ₆	10	3.1	73	14
NaHfH ₆	50	1.2	353	33
CaLaH ₆	0	1.1	281	25
CaLaH ₆	10	1.2	262	24
SrLaH ₆	0	1.4	135	15
MgZr ₂ H ₆	50	1.1	300	27
LiBa ₂ H ₆	0	0.6	186	5
LiBa ₂ H ₆	10	0.8	143	7
LiBa ₂ H ₆	50	1.2	276	26
CaLa ₂ H ₆	10	1.0	219	17
MgY_2H_6	0	0.7	365	17
MgY ₂ H ₆	10	0.5	395	9
MgY_2H_6	50	0.3	547	0.2
LiHf ₂ H ₆	10	0.8	298	14
LiHf ₂ H ₆	50	0.4	387	2
NaSc ₂ H ₆	50	0.5	664	13
LiSr ₂ H ₆	0	0.7	339	13
LiSr ₂ H ₆	10	0.7	300	11
LiTi ₂ H ₆	10	0.7	347	12
LiTi ₂ H ₆	50	0.3	535	1.1
NaLa ₂ H ₆	0	0.6	320	9
NaLa ₂ H ₆	10	0.3	502	0.5
BeY ₂ H ₆	0	0.6	285	7
BeY ₂ H ₆	10	0.4	356	4
BeY ₂ H ₆	50	0.4	419	2
LiSc ₂ H ₆	0	0.5	472	6
LiSc ₂ H ₆	10	0.3	620	1
BeLa ₂ H ₆	10	0.4	263	3
BeLa ₂ H ₆	50	0.5	302	5
NaZr ₂ H ₆	50	0.4	473	4
LiY ₂ H ₆	0	0.4	446	3
LiY ₂ H ₆	10	0.2	569	0.2
MgSc ₂ H ₆	50	0.3	676	0.6
BeSc ₂ H ₆	50	0.3	615	0.6

NaY ₂ H ₆	50	0.3	754	0.6
LiZr ₂ H ₆	50	0.3	458	0.5
LiLa ₂ H ₆	0	0.3	355	0.2

Table S2. Possible reaction routes and formation enthalpies for $LiTiH_6$, $LiZrH_6$ and $LiHfH_6$

Material	Reaction routes	Formation enthalpy
		(eV)
LiTiH ₆	LiH+TiH+2H ₂	-0.618
LiZrH ₆	LiH+ZrH+2H ₂	-0.990
LiHfH ₆	Li+HfH ₃ +3/2H ₂	-1.375

Table S3. Computed superconducting parameters for BeZrH₃ and MgHCu₃.

Material	Pressure (GPa)	λ	$\omega_{log}(\mathbf{K})$	<i>Т_с</i> (К)
BeZrH ₃	50	1.91	297.31	41.5
MgHCu ₃	0	0.83	402.19	42.0