Supplementary Information

FeSe₂/MoSe₂ heterostructures: Interface engineering for enhanced high-rate sodium-ion storage

Manshu Han^{a,*}, Baofeng Mu^a, Yu Li^{a,*}, Zhehui Shen^a, Zixin Li^a, Rongyun Jiang^b,

Minghua Chen^a, Qingguo Chen^{a,*}

^a Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School

of Electrical and Electronic Engineering, Harbin University of Science and Technology,

Harbin 150080, P. R. China;

^b School of Science, Tianjin Chengjian University, Tianjin, 300384, P. R. China.

* Corresponding authors:

E-mails: hanmanshu@hrbust.edu.cn (Manshu Han); 13124501781@163.com (Yu Li);

qgchen@263.net (Qingguo Chen).

1. Materials and chemicals

Selenium powder (Se) was purchased from Sinopharm Chemical Reagent. Ferrous phosphate ammonia-hexahydrate ($(NH_4)_2Fe(SO_4)\cdot 6H_2O$), sodium molybdate (Na_2MoO_4), hydrazine hydrate ($N_2H_4\cdot H_2O$) anhydrous citric acid were purchased from Aladdin. All chemicals were used directly and without any purification.

2. Material synthesis

2.1 Preparation of FeSe₂

The synthesis of FeSe₂ is based on the method of Mazumder with optimization.¹⁷

Specifically, add 2 mmol (NH₄)₂Fe(SO₄)₂-6H₂O, 20.8 mmol citric acid, and 4 mmol Se powder to 44 ml deionized water and stir well. After that, 16 ml of N₂H₄·H₂O was added dropwise to the mixed solution, stirred vigorously, and sonicated for 1 h. The resulting FeSe₂ solution was extracted by centrifugation with deionized water and anhydrous ethanol at 10,000 rpm for 10 min 6 times and dried in an oven to obtain FeSe₂.

2.2 Preparation of spherical FeSe₂/MoSe₂ heterostructures

A typical procedure involves placing 2 mmol Na₂MoO₄ into 20 ml of deionized water and stirring for 10 minutes, labeled as solution A. 4 mmol Se was put into 10 ml of hydrazine hydrate and stirred for 20 min, marked as solution B. Next, Solution A is added drop by drop to solution B and stirred. Finally, the FeSe₂ obtained in the first step by hydrothermal was incorporated. Finally, 10 mmol, 20 mmol, and 30 mmol of FeSe₂ obtained by the first step of hydrothermal treatment were put into them for comparison in different proportions (5:1,10:1,15:1) and the hydrothermal reaction was performed at 200°C for 24 h. The different ratios of FeSe₂/MoSe₂ (5:1,10:1,15:1) were named FM-5, FM-10 and FM-15.

3. Structural characterization

For the FeSe₂, MoSe₂, and FeSe₂/MoSe₂ heterostructures, the crystal structures were measured by X-ray diffraction (XRD, Brucker AXS/D8 Advance powder diffractometer equipped with Cu K_{α} radiation, $\lambda = 1.541$ Å). The Raman spectrums measurement with a Witec Alpha 300 R confocal Raman microscope. Scanning electron microscopy (SEM, Hitachi/SU8020) was used to analyze the morphology features. Atomic resolution images and elemental distribution were characterized by high-resolution transmission electron microscopy (HRTEM, FEI Tecnai G² F20) and an energy dispersive spectrometer (EDS). X-ray photoelectron spectroscopy (XPS) measurements were performed by Thermo Scientific ESCALAB 250Xi at Al- K_{α} source (hv = 1486.6 eV).

4. Electrochemical measurement

A CR2032-type coin cell with FeSe₂/MoSe₂ as active material was assembled for battery testing. The anode material was prepared by mixing the active material (FeSe₂/MoSe₂ powder), conductive additive (Super P), and binder (carboxymethyl cellulose (CMC)) in a 7:2:1 weight ratio and dissolving them in deionized water for 6 h. The copper foil surface was coated with slurry and subsequently dried under vacuum at 60°C for 12 h. The half cells were assembled in a closed glovebox filled with argon gas, using a sodium thick plate as the counter electrode, glass fiber, and 1.0 M NaClO₄ (EC: DMC=1:1 vol% with 5% FEC) as separator and electrolyte, respectively. Cyclic voltammetry (CV) measurements were conducted using an electrochemical workstation (CHI660E) with a voltage range of 0.1 to 2.5 V. Cycle, rate and Galvanostatic intermittent titration technique (GITT) were tested at 200 mA current with a battery test system model CT-4008. Electrochemical impedance spectra were measured using a Parstat 3000A Princeton workstation in the frequency range of 0.01 to 100 kHz.

Fig. S1. SEM images of MoSe₂.

Fig. S2. SEM images for different ratios of FeSe₂/MoSe₂. (a, d) for FM-5, (b, e) for FM-10 and (c, f) for FM-15.

Fig. S3. (a, b) XPS of the Se elements in FeSe₂ and MoSe₂, respectively.

Fig. S4. CV curves of FeSe₂, MoSe₂ and FM-10 at 0.2 mV s⁻¹.

Fig. S5. Cycling characteristics of $FeSe_2$, $MoSe_2$, and different ratios of $FeSe_2/MoSe_2$ heterostructures at a current density of 500 mA g⁻¹.

Fig. S6. Capacitive charge contributions for FM-10 at a scan rate of 0.2, 0.5, 1, and 2 mV s⁻¹.

Table S1. FeSe₂ and other anodes employed in SIBs with remarkable durability.

Materials	Morphology	CE	Voltage [V]	Current density [mA g ⁻¹]	Cycles (n)	Capacity [mAh g ⁻¹]	Year ^{Ref.}
FeSe ₂ /N-C	Rod-like	97.00%	0.5-3	100	100	439.2	201815
FeSe ₂ @C	Hollow nanocube	89.30%	0.01-3	100	100	450	201714
FeSe ₂ @rGO	Nanoparticles	98.30%	0.01-3	100	100	468.8	201828
FeSe ₂ @C	flower-like nanosheets	≈100%	0.5-3	100	30	239	2022 ³⁸
CNT/FeSe ₂ /C	Core shell	≈100%	0.01-3	100	100	450	202013
FeSe ₂ @NC	spherical	≈100%	0.5-3	200	200	410.3	2022 ²³
CoSe ₂ -MoSe ₂ /rGO	Rod-like	≈100%	0.01-3	100	200	533.5	202134
MoSe ₂ /C	Nanosheets	≈100%	0.01-2.5	200	100	354	201839
CNT/MoSe ₂ /C	Nanosheets	93.50%	0.01-3	100	100	484	201940
HC@MoSe ₂ /WS ₂ @NC	spherical	≈100%	0.01-3	200	100	415	202442

Fe ₃ Se ₄ -CoSe-C	Hierarchical porosity	≈100%	0.01-3	1000	100	400	202543
FeTiO ₃ /TiO ₂	spherical	≈100%	0.01-3	100	400	278	202444
<u>MX-Sb/Sb₂S₃@C-1.0</u>	Nanosheets	≈100%	0.01-3	100	200	355	202445
NCSe@NCSeO-YS	spherical	92%	0.01-3	200	50	446	202546
FeSe ₂ /MoSe ₂	spherical	≈100%	0.1-2.5	100	50	505.2	This
				500	100	378.3	work

Fig. S7. E vs. t curves for the FM-10 electrodes for a single GITT.

Fig. S8. (a) GITT curves measured at MoSe₂ electrodes. (b-c) Na⁺ diffusion coefficients

of MoSe₂ during charging and discharging.