Supporting Information

Molecular magnetism and Solid-Phase Transformations of Dy, Er, Yb tropolonate complexes

Svetlana P. Petrosyants, Konstantin A. Babeshkin, Alina S. Galkina,* Andrey B. Ilyukhin, Nikolay N. Efimov and Igor L. Eremenko.

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation.

Email: asgalkina@bk.ru

Table S1. Crystal data and structure refinement for 1Ln, 2Ln.

Identification code	1Er	2Er	2Yb_150K	2Yb_296K
Empirical formula	$C_{21}H_{20}ErO_{8.50}$	$C_{28}H_{21}ErO_8$	$C_{28}H_{21}O_8Yb$	$C_{28}H_{21}O_8Yb$
Formula weight	575.63	652.71	658.49	658.49
Temperature, K	150(2)	150(2)	150(2)	296(2)
Wavelength, Å	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	$P2_1/c$	P-1	P-1	P-1
a, Å	21.3411(8)	10.0449(5)	10.0295(4)	10.0839(4)
b, Å	6.4416(2)	11.4689(6)	11.4586(4)	11.5409(5)
c, Å	28.9639(10)	12.1580(6)	12.1143(5)	12.1372(5)
α, °	90	73.4297(15)	73.3230(10)	73.3888(14)
β, °	98.5854(11)	84.9764(16)	84.9470(10)	84.9290(14)
γ, °	90	64.7027(15)	64.8260(10)	64.9723(13)
Volume, Å ³	3937.1(2)	1212.79(11)	1206.07(8)	1225.59(9)
Ζ	8	2	2	2
D (calc), Mg/m^3	1.942	1.787	1.813	1.784
μ, mm ⁻¹	4.314	3.512	3.929	3.867
F(000)	2256	642	646	646
Crystal size, mm	0.24 x 0.20 x 0.20	0.28 x 0.24 x 0.10	0.30 x 0.24 x 0.22	0.20 x 0.18 x 0.12
θ range, °	2.220, 26.372	2.295, 27.485	2.604, 33.176	2.285, 34.348
Index ranges	-26<=h<=26	-13<=h<=13	-15<=h<=15	-14<=h<=15
-	-8<=k=8	-14<=k<=14	-17<=k<=17	-18<=k<=16
	-36<=1<=36	-15<=l<=15	- 18<=1<=18	-17<=l<=19
Reflections collected	49336	15999	25152	25749
Independent reflections, Rint	8014, 0.0424	5544, 0.0416	8446, 0.0405	8722, 0.0257
Completeness to $\theta = 25.242^{\circ}$	99.9 %	99.8 %	99.8 %	99.5 %
Absorption correction	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
	from equivalents	from equivalents	from equivalents	from equivalents
Max,. min. transmission	0.2657, 0.1785	0.5110, 0.1960	0.7465, 0.3528	0.7468, 0.5135
Refinement method	Full-matrix	Full-matrix	Full-matrix	Full-matrix
	least-squares on F ²			
Data / restraints / parameters	8014 / 6 / 551	5544 / 0 / 334	8446 / 0 / 341	8722 / 0 / 334
Goodness-of-fit	1.135	1.091	1.124	1.028
R1, wR2 [I>2sigma(I)]	0.0264, 0.0597	0.0429, 0.0949	0.0262, 0.0548	0.0222, 0.0465
R1, wR2 (all data)	0.0303, 0.0614	0.0510, 0.0977	0.0290, 0.0557	0.0261, 0.0478
Largest diff. peak and hole, e.Å ⁻³	0.912, -0.866	1.484, -2.408	1.913, -1.782	0.625, -0.602

Figure S1. Powder XRD patterns (WL = 1,54060) of a – 1Ln, b – 2Ln, c – 2Dy_n in comparison to the theoretical pattern for a – $[Y(C_7H_5O_2)_3(H_2O)_2]*0.5H_2O$, b – $[Yb(C_7H_5O_2)_3(C_7H_6O_2)]$.

Figure S2. Two projections of a 1D chain in the structure of 1Ln.

Table S2. SHAPE v2.1 Continuous Shape Measures calculation.

SAPR	TDD	JBTPR	BTPR	JSD
2.926	2.152	2.248	1.413	4.588
2.288	1.672	2.078	1.408	3.828
2.167	1.729	2.101	1.416	3.957
2.051	1.638	2.032	1.348	3.840
	SAPR2.9262.2882.1672.051	SAPRTDD2.9262.1522.2881.6722.1671.7292.0511.638	SAPRTDDJBTPR2.9262.1522.2482.2881.6722.0782.1671.7292.1012.0511.6382.032	SAPRTDDJBTPRBTPR2.9262.1522.2481.4132.2881.6722.0781.4082.1671.7292.1011.4162.0511.6382.0321.348

* SAPR -Square antiprism; TDD -Triangular dodecahedron; JBTPR -Biaugmented trigonal prism J50; BTPR - Biaugmented trigonal prism; JSD - Snub diphenoid J84

Figure S3. Dependences of the magnetization $[\mu_B]$ on the dc-magnetic field, H (a) and H/T (b) for 1Dy at various temperatures.

Figure S4. Dependences of the magnetization $[\mu_B]$ on the dc-magnetic field, H (a) and H/T (b) for $2Dy_n$ at various temperatures.

Figure S5. Dependences of the magnetization $[\mu_B]$ on the dc-magnetic field, H (a) and H/T (b) for **1DyY** at various temperatures.

Figure S6. Dependences of the magnetization $[\mu_B]$ on the dc-magnetic field, H (a) and H/T (b) for 1Er at various temperatures.

Figure S7. Dependences of the magnetization $[\mu_B]$ on the dc-magnetic field, H (a) and H/T (b) for **1Yb** at various temperatures.

Figure S8. Dependences of the magnetization $[\mu_B]$ on the dc-magnetic field, H (a) and H/T (b) for 2Er at various temperatures.

Figure S9. Dependences of the magnetization $[\mu_B]$ on the dc-magnetic field, H (a) and H/T (b) for 2Yb at various temperatures.

Figure S10. Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the acsusceptibility for complex 1Dy in dc-magnetic fields up to 5000 Oe at 2 K.

Figure S11. Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the acsusceptibility for complex $2Dy_n$ in dc-magnetic fields up to 5000 Oe at 2 K.

Figure S12. Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the acsusceptibility for complex 1DyY in dc-magnetic fields up to 5000 Oe at 6 K.

Figure S13. Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the acsusceptibility for complex 1Er in dc-magnetic fields up to 5000 Oe at 2 K.

Figure S14. Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the acsusceptibility for complex **1Yb** in dc-magnetic fields up to 5000 Oe at 2 K.

Figure S15. Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the acsusceptibility for complex 2Er in dc-magnetic fields up to 5000 Oe at 2 K.

Figure S16. Frequency dependencies of the real χ' (a) and imaginary χ'' (b) components of the acsusceptibility for complex **2Yb** in dc-magnetic fields up to 5000 Oe at 2 K.

Figure S17. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for **1Dy** (H_{dc} = 0 Oe) in the temperature range of 2-10 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Figure S18. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for **1Dy** (H_{dc} = 1500 Oe) in the temperature range of 2-10 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Figure S19. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for $2Dy_n$ (H_{dc} = 1500 Oe) in the temperature range of 2-10 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Figure S20. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for **1DyY** (H_{dc} = 0 Oe) in the temperature range of 3-11 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Figure S21. Frequency dependences of the real $\chi'(\nu)$ (a) and imaginary $\chi''(\nu)$ (b) components of dynamic magnetic susceptibility for **1DyY** (H_{dc} = 1000 Oe) in the temperature range of 4-10.5 K. Lines on the $\chi'(\nu)$ dependence are visual guides, lines on the $\chi''(\nu)$ dependence are the approximations by the generalized Debye model.

Figure S22. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for **1Er** (H_{dc} = 1000 Oe) in the temperature range of 2-3 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Figure S23. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for **1Yb** (H_{dc} = 1500 Oe) in the temperature range of 2-6 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Figure S24. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for **2Er** (H_{dc} = 500 Oe) in the temperature range of 2-3 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Figure S25. Frequency dependences of the real $\chi'(v)$ (a) and imaginary $\chi''(v)$ (b) components of dynamic magnetic susceptibility for **2Yb** (H_{dc} = 500 Oe) in the temperature range of 2-5 K. Lines on the $\chi'(v)$ dependence are visual guides, lines on the $\chi''(v)$ dependence are the approximations by the generalized Debye model.

Table S4. Fitting of the τ vs. T dependences for **2Er**.

Figure S26. TG curves for 1Dy (a), 1Er (b), 2Er (c), 2Yb (d) with the mass change on the first stage of the decomposition.