## **Supplementary material**

## Room temperature Multiferroicity and Magnetoelectric coupling in Ca/Mn modified BaTiO<sub>3</sub>

P. Maneesha<sup>1</sup>, Koyal Suman Samantaray<sup>1</sup>, Rakhi Saha<sup>1</sup>, Tabinda Nabi<sup>1</sup>, Rajashri Urkude<sup>2</sup>, Biplab Ghosh<sup>2</sup>, Arjun K Pathak<sup>3</sup>, Indranil Bhaumik<sup>4,5</sup>, Abdelkrim Mekki<sup>6,7</sup>, Khalil Harrabi<sup>6,8</sup>, Somaditya Sen<sup>1\*</sup>



**Figure S1:** Refinement plots of XRD data of all samples. Inset shows the zoomed image of the emergence of hexagonal (104) peak near tetragonal (110) peak.



Figure S2: Variation of Ti-Ti bond in octahedral dimer of P6<sub>3</sub>/mmc space group in doped samples.



Figure S3\_1: Deconvoluted Ba 3d XPS spectra (a) Before Ar ion etching, (b) After Ar ion etching



Figure S3\_2: Deconvoluted Ti 2p XPS spectra (a) Before Ar ion etching, (b) After Ar ion etching



Figure S3\_3: Deconvoluted O 1s XPS spectra (a) Before Ar ion etching, (b) After Ar ion etching



Figure S3\_4: Deconvoluted Mn 2p XPS spectra (a) Before Ar ion etching, (b) After Ar ion etching



Figure S3\_5: Deconvoluted Ca 2p XPS spectra (a) Before Ar ion etching, (b) After Ar ion etchin



Figure S4: XANES Pre-edge fitting using Athena software

## **Explanation SE1: PUND measurement**

The PUND measurement is a standard ferroelectric test consisting of five pulses applied in sequence. The pulses are of the same (programmable) pulse width, with a fixed delay time between the pulses and are of the same magnitude ( $|V_{Max}|$ ). The first pulse is in the negative  $V_{Max}$  direction. It is not measured, but is used to preset the sample into the particular polarization ( $\mu$ C/cm<sup>2</sup>) state. The next two pulses are in the positive  $V_{Max}$  direction. The first switches the polarization and the second does not so that both switched and unswitched polarization are measured. At each pulse measurements are made with the pulse voltage applied after the pulse width and again after the voltage returns to zero and a delay of the pulse width (ms). The last two pulses are in the negative  $V_{Max}$  direction with the first pulse switching the sample and the last pulse maintaining the switched state. During the first voltage pulse (P), all active mechanisms will bring their contribution to the measured current, including leakage currents, dielectric displacement current, and ferroelectric displacement current, During the second voltage pulse of same polarity (U), since all dipoles have been switched, leakage currents, dielectric displacement current will contribute to this pulse. Hence, the subtraction of polarization in U from polarization in P gives the value of actual polarization.



Figure S5: PUND measurement results of BCTMO samples

## Table ST1:

| Table ST1: PUND measurement results of the BCTMO samples with unsaturated P-E loops |                  |                  |                |                |                |
|-------------------------------------------------------------------------------------|------------------|------------------|----------------|----------------|----------------|
| Pulse                                                                               | Applied voltage  | Measured         | BCTMO1         | BCTMO2         | BCTMO3         |
|                                                                                     | $(kV) (V_{max})$ | values           | $(\mu C/cm^2)$ | $(\mu C/cm^2)$ | $(\mu C/cm^2)$ |
| 1                                                                                   | -1.5             | None             | -              | -              | -              |
| 2                                                                                   | 1.5              | P*               | 4.36908        | 1.51114        | 0.20365        |
|                                                                                     | 0                | P <sub>r</sub> * | 0.73448        | 0.20373        | 0.00794        |
| 3                                                                                   | 1.5              | P^               | 4.32061        | 1.4952         | 0.20256        |
|                                                                                     | 0                | $P_r^{\wedge}$   | 0.41005        | 0.10576        | 0.00619        |
| 4                                                                                   | -1.5             | P*               | -4.71032       | -1.50941       | -0.203         |
|                                                                                     | 0                | P <sub>r</sub> * | -0.8522        | -0.20289       | -0.00729       |
| 5                                                                                   | 1.5              | P^               | -4.65976       | -1.47351       | -0.20169       |
|                                                                                     | 0                | $P_r^{\wedge}$   | -0.59091       | -0.10943       | -0.00501       |
| Net Switching Polarization, dP                                                      |                  |                  | 0.04951        | 0.02592        | 0.0012         |
| True remnant polarization dP <sub>r</sub>                                           |                  |                  | 0.2929         | 0.0957         | 0.0020         |