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CALCULATION METHOD 

In the calculation of carrier transport characteristics, we employed the deformation potential 

(DP) method,1 wherein a strain ranging from -2% to 2% was applied to the material in order to 

determine its elastic modulus C and deformation potential constant E1. The formula for 

calculating the carrier mobility of the material is as follows: 
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In the equation, ħ, e, C, m*, kB, T and E1 respectively denote the reduced Planck constant, 

elementary charge, elastic modulus, effective mass of charge carriers, Boltzmann constant, 

Kelvin temperature and deformation potential constant. 

The macroscopic optical properties of materials are usually represented by the complex 

dielectric function: 
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In this equation, ε1(ω) and ε2(ω) represent the real and imaginary components of the complex 

dielectric function respectively, with ω denoting the frequency of photons. The dielectric 

function demonstrates a linear response to electromagnetic interactions and is closely associated 

with the band gap value Eg. The determination of ε2(ω) can be achieved through momentum 

matrix elements as expressed below: 
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The equation includes eα and eβ, which represent unit vectors along the α and β directions, q 

representing the wave number of incident electromagnetic waves, Ω representing the volume 

of a crystal cell, and c and v respectively representing conduction band and valence band. The 

imaginary part ε2(ω) of the complex dielectric function is obtained through integration of 

momentum matrix elements between unoccupied and occupied wave functions in the Brillouin 

zone, representing the energy required for the formation of an electric dipole moment. This 

quantity is directly proportional to the absorption spectrum and reflects optical transitions from 

valence band maximum (VBM) to conduction band minimum (CBM) at the threshold energy 

level. The peak value corresponds to the number of electrons undergoing transition. The larger 

the imaginary components of the complex dielectric function, the greater the extent of electronic 

excitation and the poorer the insulation performance of the system. In this case, there is a higher 

possibility for electrons to absorb photons, resulting in a larger number of electrons in an excited 

state and a higher probability of transition occurring. The real part ε1(ω) of the dielectric function 

is derived from the imaginary part using the Kramers-Kronig transformation2:  

 ( )
( )2

1 2 20

2
1 dP

  
  

  

  
= +

 −  (S4) 

In the equation, P represents the Cauchy principal value of the integral. The polarization behavior 

of materials can be comprehended through ε1(ω), which is commonly employed to indicate the 

magnitude of charge polarization in response to an external electric field and reflects the 

material's intrinsic energy storage capability. A higher dielectric constant signifies a more 

pronounced affinity for charges. If the influence of lattice vibrations is neglected, the value at 

zero frequency or zero energy limit is the static dielectric constant ε(0). The presence of a higher 

static dielectric constant can enhance the occurrence of low-level charge defects, thereby 

reducing radiation recombination and exciton binding energy. Additionally, it signifies a decrease 

in long-range Coulomb attraction due to the screening effect on charged defects and impurities, 

resulting in reduced carrier recombination, scattering, and trapping.3  

The absorption coefficient α is a crucial parameter for assessing the light-absorbing 
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capability of materials, and its relationship with frequency ω within a specific range of photon 

energy can be determined using the subsequent formula: 
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In principle, the maximum efficiency of a solar cell is determined by the universally 

recognized and classical Shockley-Queisser (SQ) limit.4 The mathematical formulation is as 

follows: 
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The variables Pm and Pin respectively denote the peak power density and the total incident power 

density of the solar energy spectrum in the given equation. Due to the reliance solely on the 

electronic band gap value of the material, estimation of maximum efficiency in this method is 

approximate. Building upon this, Liping Yu and Zunger developed the Spectroscopic Limited 

Maximum Efficiency (SLME) method for solar cells.5,6 The calculation of power density P can 

be obtained by multiplying current density J with voltage V, as depicted in the following equation. 
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In the equation, Jsc and J0 represent short circuit current density and reverse saturation current 

density, respectively. The calculation of Jsc and J0 can be derived if the absorption coefficient 

α(E), AM1.5G solar spectrum Isun, and blackbody spectrum Ibb(E,T) are known. The 

corresponding formula is as follows: 
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In the equation, r

0J  and fr respectively denote the radiation composite current density and 

radiation composite current fraction. 

The open circuit voltage is the maximum output voltage of a solar cell under zero current (open 

circuit) conditions. The calculation formula is as follows: 
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The fill factor (FF) reflects the ratio of the actual output power of the solar cell to the ideal power, 

and is an important parameter to characterize the performance of the solar cell. The greater the 

value, the higher the photoelectric conversion efficiency of the battery. The formula is as follows: 
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In the equation, Vm and Jm represent the voltage and current density at the maximum power point 

(MPP), respectively. 

 

Table S1  Lattice constant and angle of anti-perovskites X4A2O (X = K, Rb, Cs; A = Cl, Br, I)  

 

Materials a (Å) b (Å) c (Å) α = β = γ 

K4Cl2O 5.172 5.172 16.055 90° 

K4Br2O 5.237 5.237 16.789 90° 

K4I2O 5.344 5.344 17.717 90° 

Rb4Cl2O 5.466 5.466 16.819 90° 

Rb4Br2O 5.528 5.528 17.515 90° 

Rb4I2O 5.639 5.639 18.240 90° 

Cs4Cl2O 5.785 5.785 17.591 90° 

Cs4Br2O 5.838 5.838 18.246 90° 

Cs4I2O 5.923 5.923 19.079 90° 

 

Table S2  Elasticity modulus C (GPa) and deformation potential constant E1 (eV) of X4A2O in in-plane 

(x/y) and out-of-plane (z) directions 

Materials Cx/y Cz E1e-x/y E1e-z E1h-x/y E1h-z 

K4Cl2O 51.24 32.87 6.16 0.80 6.67 1.35 

K4Br2O 43.25 28.08 5.37 0.86 5.87 1.91 

K4I2O 45.47 23.90 7.01 1.41 7.37 2.74 

Rb4Cl2O 42.99 27.19 6.41 1.20 8.19 1.90 

Rb4Br2O 37.89 23.89 7.31 2.47 9.02 3.64 

Rb4I2O 39.05 21.94 5.08 0.56 6.27 0.80 

Cs4Cl2O 19.93 20.96 9.94 1.98 13.82 3.22 

Cs4Br2O 16.87 19.32 9.22 2.43 13.17 4.05 

Cs4I2O 14.37 18.05 7.57 0.55 10.41 2.29 
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Fig.S1  X-ray diffraction (XRD) patterns of X4A2O  

Fig.S2  Electron localization functions (ELF) in the direction (100) of X4A2O  
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Fig.S3   of X4A2O  

Fig.S5   Poisson’s modulus of X4A2O  

Fig.S4   Shear’s modulus G  of X4A2O  
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Fig.S6  Ab initio molecular dynamic (AIMD) simulation of X4A2O  

Fig.S7  PBE band structure of X4A2O  
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Fig.S8  HSE06 projected band structure of X4A2O  

Fig.S9  Density of states of X4A2O  
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Fig.S10  Orientation-dependent carrier effective mass of X4A2O  

Fig.S11  Contributions of ions to the real and imaginary parts of dielectric functions of X4A2O  
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Fig.S12  Transition dipole moment of X4A2O  

Fig.S13  The calculated J-V characteristic of X4A2O  
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