Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Optimized encapsulation of CsPbBr₃ nanocrystals in metal-organic framework by improved synthesis

Yongqiang Ji^a, Luyang Tong^a, Kai An^a, Le Li^b, Na Liu^c, Jiewen Wei^d, Tong Wang^d, Lixia Bao^e, Xiaobo He^a, Tinglu Song^{f,*}, Fan Xu^{g,*}

^a Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China

^b Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China

^c Faculty of Materials Science, MSU-BIT University, Shenzhen, 518172 China

^d Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK

^e Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, China

^f Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

^g Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China

Corresponding Authors: song@bit.edu.cn (T.S.); xufan@pku.edu.cn (F.X.)

Figure S1. TEM-EDX results of the fabricated CsPbBr₃ NCs.

Figure S2. (a) SEM and (b) TEM images of MIL-53 (Al).

Figure S3. SEM-EDX results of one-step encapsulated CsPbBr₃@MOF composites.

Figure S4. SEM-EDX results of two-step encapsulated CsPbBr3@MOF composites.

Figure S5. XPS results of Al 2s for control, one-step, and two-step samples, respectively.

Figure S6. XRD results of MIL-53 (Al), one-step and two-step encapsulated CsPbBr₃ NCs@MOF samples, respectively. The asterisks represent diffraction peaks of CsPbBr₃ NC.

Figure S7. The full XPS survey spectra of control, one-step, and two-step CsPbBr₃@MOF samples, respectively.

Figure S8. CIE chromaticity coordinates of control, one-step, and two-step samples, respectively.

Figure S9. Water contact angle results of control, one-step, and two-step samples, respectively.

Figure S10. Steady-state PL evolution of control, one-step and two-step sample films under ambient conditions.

Figure S11. Steady-state PL evolution of control, one-step and two-step sample films at 100 °C.

	A_1	t ₁ (ns)	\mathbf{A}_{2}	t ₂ (ns)	t _{ave} (ns)
Control	601.29	14.86	362.55	64.98	51.20
One-step	23111.44	8.17	658.85	55.76	15.92
Two-step	756.37	26.13	275.51	111.53	78.10

Table S1. The fitted data for TRPL curves.