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Fig. S1 (a) The capacitance–frequency curves and phase angle of LiClO4/PVA 
(LiClO4: PVA = 1:1) electrolyte. Transfer characteristic curves of ITZO EGTs 
subjected to plasma treatments: (b) Initial, (c) O2 plasma, and (d) Ar plasma.



Table S1 The deposition rate of sputtered particles under different λ values.

λ* (m) 0.34 0.67 1.34

Gas pressure (Pa) 1.6 0.8 0.4

Deposition rate 
(nm/s)

0.054 0.074 0.089

*  , where P is the sputtering pressure, πd2 is the collisional cross section, k is the 
𝜆=

𝑘𝑇

2𝑃𝜋𝑑2

Boltzmann constant, and T is the absolute temperature.  
The sputtering power and Ar/O2 flow ratio were fixed at 100 W and 60/3 sccm, respectively.



Fig. S2 Schematic of ITZO films subjected to a high-temperature thermal treatment.



Fig. S3 (a) The density of ITZO films with different λ values. The surface 
morphology of ITZO films deposited at different λ values: (b) 0.34 m, (c) 0.67 m and 
(d) 1.34 m. Comparison of the properties of ITZO films with different λ values: (e) 
film density and roughness, (f) Hall mobility and carrier concentration.



Table S2 The deposition rate of sputtered particles under different ρ values.

ρ* (mg/m3) 6.30 6.34 6.41

Ar/O2 flow ratio (sccm) 60/6 60/3 60/0

Deposition rate (nm/s) 0.081 0.089 0.128

*  , where  is the mean molar mass of sputtering gas, V is the volume of sputtering 
𝜌=

𝑛𝑀̅
𝑉 𝑀̅

gas, n is the amount of substance of sputtering gas.  
The sputtering power and P were fixed at 100 W and 0.4 Pa, respectively.



Fig. S4 (a) The density of ITZO films with different ρ values. The surface 
morphology of ITZO films deposited at different ρ values: (b) 6.30 mg/m3, (c) 6.34 
mg/m3 and (d) 6.41 mg/m3.



Fig. S5 The peak and D values as a function of the ρ values.



Fig. S6 The O1s spectra of ITZO thin films with different ρ values: (a) 6.30 mg/m3, (b) 
6.34 mg/m3, (c) 6.41 mg/m3. (OⅠ: 529.80 ± 0.20 eV, OⅡ: 531.30 ± 0.10 eV, and OⅢ: 
532.35 ± 0.15 eV)



Fig. S7 The transfer characteristic curves of EGTs based on a-ITZO films deposited at 
different ρ values: (a) 6.30 mg/m3, (b) 6.34 mg/m3, (c) 6.41 mg/m3. (d) The hysteresis 
width of ITZO EGTs.



Fig. S8 The EPSC triggered by pulsed gate voltage with different amplitudes for 
ITZO EGTs under different ρ values: (a) 6.30 g/m3, (b) 6.34 g/m3, (c) 6.41 g/m3.



Fig. S9 The EPSC triggered by pulsed gate voltage with different durations for ITZO 
EGTs under different ρ values: (a) 6.30 g/m3, (b) 6.34 g/m3, (c) 6.41 g/m3.



Fig. S10 Dependence of PPF index on pulse interval time (Δt) in ITZO EGTs 
equipped ITZO films deposited at different ρ values: (a) 6.30 g/m3, (b) 6.34 g/m3, (c) 
6.41 g/m3.



Fig. S11 The EPSC response to five consecutive pulses with different pulse 
frequencies for ITZO EGTs equipped ITZO films deposited at different ρ values: (a) 
6.30 g/m3, (b) 6.34 g/m3, (c) 6.41 g/m3.



Fig. S12 EPSC triggered by multiple pulses with different amplitudes (VDS =0.1 V) 
for ITZO EGTs equipped ITZO films deposited at different ρ values: (a) 6.30 g/m3, (b) 
6.34 g/m3, (c) 6.41 g/m3.



Table S3 Performance comparison of different oxide EGTs
Device Linearity # of weights Max/min weight 

ratio

Operation 

condition

Accuracy Ref

Li-PVA/ITZO 0.89/-1.10 40 17.73 ±1.5 V 91% This work

Li-PEO/ZnO 0.21/-0.12 32 —— ±5.0 V 10.01% [1]

Na-PEO/ZnO 0.45/-0.4 32 —— ±5.0 V 87.73% [1]

K-PEO/ZnO 0.53/-0.41 32 —— ±5.0 V 87.96% [1]

Li-PFOTS5/ZnO -1.21/0.83 60 13.51 ±4.0 V 89.71% [2]

CdSe/IGZO 0.32/-1.37 20 —— ±5.0 V 90.10% [3]

LATP/IGZO 1.04/−2.22 50 —— ±20.0 V 94.80% [4]

Li-PEO/InZnO 4.97/-4.55 —— 1.79 ±1.0 V ≈87.50% [5]

ZBO-In2O3 0.85/-2.66 20 6.26 -2V-4V 93.80% [6]

Li-PEO —— 40 15 0-6V 91.60% [7]

Li-ZnO 100 85.00% [8]
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