Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Rational composition design of sesquioxide (Y,Sc,Lu)₂O₃ single-crystal fibers for robust and high-sensitivity ultrasonic temperature sensor beyond 2100 °C

Mingji Zhang^a, Tao Wang^a,*, Xin Guan^a, Kaihui Zhang^a, Zhengmin Wang^a, Jian Zhang^a,*, Zhitai Jia^a,^b, and Xutang Tao^a,*

^a State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong, 250100, China

^b Shandong Research Institute of Industrial Technology, Jinan, Shandong, 250100, China

*Corresponding authors.

E-mail: t.wang@sdu.edu.cn (Tao Wang); jian.zhang@sdu.edu.cn (Jian Zhang); txt@sdu.edu.cn (Xutang Tao).

Fig. S1 The refined XRD pattern of the representative $(Y_{0.6}Sc_{0.4})_2O_3$ SCF.

Fig. S2 (a) Raman spectra. (b) Raman spectra and diffuse reflectance spectra.

Fig. S3 The Laue diffraction patterns of the $(Y_xSc_{1-x})_2O_3$ SCF. The X-ray is perpendicular to the axis direction of the SCF.

Fig. S4 The real-time crystal growth image of the 20% $Lu^{3+}:(Y_{0.6}Sc_{0.4})_2O_3$ SCF recorded by a CCD camera. The as-grown SCF and melting zone are to be separated.

Fig. S5 (a) The refined XRD patterns of the Lu^{3+} doped $(Y_{0.6}Sc_{0.4})_2O_3$ SCF. (b) Laue diffraction patterns. (c) EDS mapping images.

Fig. S6 The reflected signals of the 10% $Lu^{3+}:(Y_{0.6}Sc_{0.4})_2O_3$ SCF at an ultra-high temperature of 2100 °C.

Fig. S7 The thermometry curve of the 10% $Lu^{3+}:(Y_{0.4}Sc_{0.6})_2O_3$ SCF-UTS. (a) 25~1000 °C. (b) 1000~2100 °C.

SCF-UTS	Acoustic	Acoustic velocity	Unit sensitivity
	mode	(m/s)	$(ns \circ C^{-1} m^{-1})$
$(Y_{0.4}Sc_{0.6})_2O_3$	P-Wave	6408.4	26.78
$(Y_{0.5}Sc_{0.5})_2O_3$	P-Wave	5772.3	30.73
$(Y_{0.6}Sc_{0.4})_2O_3$	P-Wave	5343.8	40.67
$(Y_{0.4}Sc_{0.6})_2O_3$	S-Wave	4036.3	44.68
$(Y_{0.5}Sc_{0.5})_2O_3$	S-Wave	3601.6	48.25
$(Y_{0.6}Sc_{0.4})_2O_3$	S-Wave	3177.2	52.13
5% $Lu^{3+}:(Y_{0.6}Sc_{0.4})_2O_3$	S-Wave	2984.9	60.30
$10\% Lu^{3+}:(Y_{0.6}Sc_{0.4})_2O_3$	S-Wave	2754.7	66.31

Table S1 The comparison of the acoustic velocity and unit sensitivity of the SCF-UTS with various compositions

Delay	Fitted	Actual	ΔΤ		
time (µs	temperature (°C)	temperature (°C)	(°C)		
)					
21.77	35.75	25	10.75		
21.80	80.38	100	19.62		
21.85	178.18	200	21.82		
21.90	283.82	300	16.18		
21.97	401.24	400	1.24		
22.04	508.47	500	8.47		
22.11	600.35	600	0.35		
22.18	683.19	700	16.81		
22.28	808.34	800	8.34		
22.39	909.66	900	9.66		
22.53	993.91	1000	6.09		
$P = \Delta T_{max}/T_r = 21.82/975 = 2.24\%$					

Table S2 The thermometry precision of the 10% Lu^{3+} :(Y_{0.4}Sc_{0.6})₂O₃ SCF-UTS in the range of 25~1000 °C.

Delay	Fitted	Actual	ΔΤ
time (μs)	temperature (°C)	temperature (°C)	(°C)
22.53	1008.16	1000	8.16
22.69	1105.82	1100	5.82
22.84	1192.00	1200	-8.00
23.03	1294.48	1300	-5.52
23.23	1403.84	1400	3.84
23.42	1497.16	1500	-2.84
23.64	1597.34	1600	-2.66
23.87	1700.96	1700	0.96
24.14	1807.48	1800	7.48
24.43	1910.85	1900	10.85
24.71	1999.67	2000	-0.33
25.06	2095.93	2100	-4.07

Table S3 The thermometry precision of the 10% Lu^{3+} : $(Y_{0.4}Sc_{0.6})_2O_3$ SCF-UTS in the