Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information (ESI)

Zinc oxide-decorated MIL-53(Al)-derived porous carbon for supercapacitor devices

Arpad Mihai Rostas,^{a,§} Ahmet Gungor,^{b,d,§} Angela M. Kasza,^a Feray Bakan Misirlioglu,^c Alexandru Turza,^a Lucian Barbu-Tudoran,^a Emre Erdem,^{b,d*} and Maria Mihet^{a*}

^aNational Institute for Research and Development of Isotopic and Molecular Technologies -INCDTIM, Donat Street, 67-103, 400293 Cluj-Napoca, Romania

^bFaculty of Engineering and Natural Sciences, Sabancı University, 34956 Istanbul, Türkiye

^cSabancı University, Nanotechnology Research and Application Center (SUNUM), 34956 Istanbul,

Türkiye

^dCenter of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabancı University, Tuzla 34956, Istanbul, Türkiye

[§]Contributed equally

*Corresponding authors: emre.erdem@sabanciuniv.edu; maria.mihet@itim-cj.ro

Figure S1. TGA profiles measured in Ar flow for the un-impregnated (*as*) and (*lt*) MIL-53(Al) samples.

Figure S2. XRD patterns of the un-impregnated (as) and (lt) MIL-53(Al)-derived carbon samples.

Figure S3. SEM images of the MIL-53(Al)-derived C samples.

Figure S4. SEM images at different magnifications for the ZnO@C MIL-53(Al)-derived composites (red circles randomly mark small pores within the samples).

Figure S5. FTIR spectra of the ZnO@C MIL-53(Al)-derived composites.

Methods

The equations used to determine the specific capacitance (F/g), energy density (Wh/kg), and power density (W/kg) of a supercapacitor are provided below. In this study, specific capacitance (F g⁻¹) was calculated from the CV curves, while specific capacity (mA h g⁻¹) was derived from the GCD data. These two parameters represent different aspects of the electrochemical performance of the ZnO@C electrode material. Detailed calculation methods for both parameters are provided below. The specific capacitance values (C_{p} , F/g) were calculated from the CV curves using Equation 1, where I (mA) represent the applied current, dV (V) is the operated voltage window, v (mV/s) is the applied scan rate, and m (g) is the mass of the electrode material used.

$$C_p = \frac{\int_{V_1}^{V_2} I(V) dV}{2mv\Delta V} \tag{1}$$

The energy density and power density for the prepared electrodes were calculated according to Equations 2 and 3, respectively.

$$E_D = \frac{0.5 * C_p * \Delta V^2}{3.6}$$
(2)

$$P_D = \frac{E_D}{(\Delta t/3600)} \tag{3}$$

where, C_p is the specific capacitance (F/g), ΔV (V) is the maximum potential window, E_D is the energy density, and Δt is the discharging time.

The electrochemical properties, along with all other results, were obtained using the software (EC-Lab) of the BioLogic VMP 300 electrochemical device.

Equivalent Circuit						
	ZnO-sym	ZnO@C(as)-sym	ZnO@C(lt)-sym	ZnO-asym	ZnO@C(as)-asym	ZnO@C(<i>lt</i>)-asym
R 1	5	9.4 x10 ⁻⁹	19.5	1000	1.5	1.3
R ₂	57221	$0.2 \text{ x} 10^{42}$	0.1 x10 ³⁶	100	10.3 x10 ⁻⁹	43659
R3	473032	2.8 x10 ⁻³		10	157.5	3735
R4	31481	1156		1	224264	
C1				1 x10 ⁻⁶	0.12 x10 ⁻⁶	
C ₂						0.1 x10 ⁻³
C ₃	23.5 x10 ⁻⁶	25073				
C4	69.8 x10 ⁻⁶	42.5 x10 ⁻⁶		1 x10 ⁻⁹	1.14 x10 ⁻⁹	
Q 1						
Q ₂			0.11 x10 ⁻³	1 x10 ⁻⁶	28.35 x10 ⁻⁶	
Q3			30.2 x10 ⁻⁶			14.9 x10 ⁻⁶
Q4						46.9 x10 ⁻⁶
A1						
A2			0.46	0.7	0.69	

 Table S1. Fitted equivalent circuit parameters of the ZnO@C-based SCs.