Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Magnetostructural Coupling, Kondo-like Behavior, and Magnetocaloric Performance in Fe-doped Nd_{0.5}(Sr_{0.4}Ba_{0.1})CoO₃ Perovskites

R. S. Silva Jr.^{1,2,*}, F. Serrano-Sánchez², J. E. Rodrigues³, C. Santos¹, J. M. Attah-Baah¹, R. D. dos Reis⁴, J. L. Martínez², J. A. Alonso², N. S. Ferreira^{2,†}

¹Department of Physics, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
²Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain.
³European Synchrotron Radiation Facility (ESRF), Grenoble 38000, France.
⁴Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil.

Corresponding Author E-mail: †nilson@academico.ufs.br, *romu.fisica@gmail.com

$Nd_{0.5}Sr_{0.4}Ba_{0.1}Co_{1-x}Fe_xO_3$				
<i>x</i>	0.0	0.04	0.12	0.2
Atoms positions				
(Nd/Sr/Ba) x	0.50193(1)	0.50027(4)	0.50073(4)	0.50419(4)
У	0.25	0.25	0.25	0.25
Z	0.50118(5)	0.49754(3)	0.49807(4)	0.50326(5)
(Co/Fe) x	0.5	0.5	0.5	0.5
У	0.0	0.0	0.0	0.0
Z	0.0	0.0	0.0	0.0
(O1) x	0.03872(7)	0.03808(1)	0.03272(2)	0.02668(5)
У	0.25	0.25	0.25	0.25
Z	0.45818(2)	0.50887(4)	0.49685(5)	0.53159(6)
<i>O2 x</i>	0.24686(5)	0.25416(3)	0.24795(4)	0.26537(2)
У	0.00911(3)	0.02713(6)	0.02448(7)	-0.01051(2)
Z	0.73411(3)	0.76462(2)	0.75156(3)	0.72905(4)
B _{iso}				
Nd/Sr/Ba	0.767(9)	0.726(7)	0.687(7)	0.686(1)
Co/Fe	0.430(1)	0.428(1)	0.372(9)	0.413(1)
01	0.940(2)	0.552(9)	1.118(1)	1.793(2)
02	0.940(2)	0.552(9)	1.118(1)	1.793(2)
Lattice parameters				
a (Å)	5.4144(1)	5.4302(8)	5.4300(2)	5.4232(4)
b (Å)	7.6502(3)	7.6220(3)	7.6334(1)	7.6524(0)
<i>c</i> (Å)	5.3985(2)	5.3929(8)	5.3996(2)	5.4098(6)
$V(Å^3)$	223.61(4)	223.21(4)	223.81(2)	224.51(4)
Average bonds (Å) and angles (°)				
$\langle Nd/Sr/Ba - 01 \rangle$	2.63(4)	2.64(3)	2.65(2)	2.65(3)
⟨Nd/Sr/Ba – O2⟩	2.70(6)	2.65(1)	2.70(7)	2.70(9)
$\langle Nd/Sr/Ba - O \rangle$	2.67(0)	2.64(7)	2.67(9)	2.68(1)
$\langle Co/Fe - O1 \rangle$	1.931(3)	1.917(3)	1.916(7)	1.926(4)
$\langle Co/Fe - O2 \rangle$	1.91(8)	1.925(1)	1.92(2)	1.922(2)
$\langle Co/Fe - O \rangle$	1.924(7)	1.921(2)	1.919(4)	1.924(3)
$\langle Co/Fe - O1 - Co/Fe \rangle$	164.1(9)	167.3(6)	169.3(7)	166.5(2)
$\langle Co/Fe - O2 - Co/Fe \rangle$	174.5(1)	167.4(4)	168.8(4)	170.4(1)
$\langle Co/Fe - O - Co/Fe \rangle$	169.3(5)	167.4(0)	169.1(1)	168.4(7)
Reliability factors				
R _p (%)	13.0	7.68	12.3	11.9
R_{wp} (%)	17.3	9.84	16.8	17.1
R_{exp} (%)	2.99	5.25	2.84	3.73
R_{Bragg} (%)	5.73	5.07	6.86	7.73
χ ²	33.7	3.51	37.8	21.0

Table S1: Structural parameters of the Nd_{0.5}Sr_{0.4}Ba_{0.1}Co_{1-x}Fe_xO₃ (x = 0-0.2) samples at room temperature obtained through SXRD data Rietveld refinements.

Fig. S1: SXRD temperature-dependent in the 4-300K range for the x = 0.0 (a) and x = 0.2 (b) samples.

Fig. S2: Rietveld refinement of the SXRD data for (a) x = 0.0 at 4 K, and (b) x = 0.2 at 10 K.

Fig. S3: *ac* magnetic susceptibility (χ_{ac}) data taken at frequencies (*f*) between 0.1–10 kHz as a function of Fe-content.

Fig. S4: M(H) isotherms temperature-dependent for the Nd_{0.5}Sr_{0.4}Ba_{0.1}Co_{1-x}Fe_xO₃ (x = 0-0.2) samples.

Fig. S5: Linear fitting of T_{peak} data for the Nd_{0.5}Sr_{0.4}Ba_{0.1}Co_{1-x}Fe_xO₃ (x = 0-0.2) samples.

Fig. S6: (a) M^4 versus H/M plots for the Nd_{0.5}Sr_{0.4}Ba_{0.1}Co_{1-x}Fe_xO₃(x = 0-0.2) samples. Modified Arrott-plots $M^{1/\beta}$ vs $(H/M)^{1/\gamma}$ for curves at $T = T_C$ with the models: (b) mean-field, (c) tricritical mean-field, (d) 3D-Heisenberg, (e) 3D-Ising, and (f) 3D XY.

Fig. S7: Modified Arrott-plots $[M^{1/\beta} vs (H/M)^{1/\gamma}]$ constructed with the critical exponents $\beta = 0.413$ and $\gamma = 1.12$.

Fig. S8: Fitting of the isotherms at $T = T_C$ by $M(H,0) \approx (H)^{1/\delta}$ relation for the Nd_{0.5}Sr_{0.4}Ba_{0.1}Co_{1-x}Fe_xO₃ (x = 0-0.2) samples.

Fig. S9: dM/dT(T) curves at lower temperature for the Nd_{0.5}Sr_{0.4}Ba_{0.1}Co_{1-x}Fe_xO₃ (x = 0-0.2) samples.