Supporting Information for

Enhanced Specific Detectivity of ternary Near–Infrared Organic Photodetector with ZnO/PDIN Double–Electron Transport Layer for health monitoring

Honglin Wang^{a,b}, Minghao Wang^{a,b}, Jingchong Liang^{a,b}, Dawei Yan^{a,c}, Linghai Xie^d, Xiaoya Hou^{a,b,*},

and Jie Zhang^{a,b}

^a School of Mechanical Engineering, Jiangnan University, No.1800, Lihu Avenue, Wuxi City, Jiangsu 214122, P.R. China.

^b Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology (Jiangnan University).

^c School of Internet of Things Engineering, Jiangnan University, No.1800, Lihu Avenue, Wuxi City, Jiangsu 214122, P.R. China.

^d Nanjing University of Posts and Telecommunications, Nanjing City, Jiangsu 210023, P.R. China.

E-mail: xiaoyahou@jiangnan.edu.cn

1. Responsivity and Specific detectivity characteristics

Responsivity in OPDs can be measured by the following equation[1]

$$R = EQE \frac{q\lambda}{hc} = \frac{EQE \times \lambda}{1240}$$
(S1)

where *q* is elementary charge (1.6×10⁻¹⁹C), λ is the wavelength of incident light, *h* is Planck's constant, and *c* is the speed of light. The specific detection rate is obtained by equations 2 and 3. [2,3]

$$D_{shot}^{*} = \frac{R}{\sqrt{2qJ_D}}$$
(S2)

$$D^* = \frac{\sqrt{AB}}{NEP} = \frac{\sqrt{AB} \times R}{i_n}$$
(S3)

Formula 2 represents the D^* when the noise of the device is mainly composed of shot noise. Formula 3 is the specific detection rate obtained from the noise current, which can prevent the D^* from being overestimated. The difference between the values obtained from the two formulas can reflect the degree of influence of shot noise affected by dark current on devices performance.

2 Supporting Figs

Fig. S1. Normalized absorption spectra of three materials, PC₆₁BM, PTB7-Th, Y6.

Fig. S2 (a) The dark J-V curves, (b) EQE curves, (c) Responsivity curves, (d) Specific detectivity curves obtained from J_D , (e) Noise spectral densities, and (f) NIR- specific detectivity spectra obtained from the noise current for OPDs with different Y6 weight fractions.

Fig. S3. D* spectra of binary device from noise.

Fig. S4. Dark current box plots of 10 devices fabricated separately under different ETLs.

Fig. S5. AFM height images $(5 \times 5 \ \mu\text{m})$ and 3D AFM diagrams of the active layers on (a) 0%Y6, (b) 10%Y6, (c) 20%, (d) 30%Y6, (e) 40%Y6, and (f) 50%Y6.

Fig. S6. Impedance spectra of OPDs with (a) different Y6 weight fractions and (b) different ETLs.

Fig. S7. (a) Capacitance-Voltage curves, (b) Mott Schottky curves, and (c) Dependence of the opencircuit voltage on light intensity of OPDs with different Y6 weight fractions.

Fig. S8. (a-b) Capacitance-Frequency curves and trap density of state curves of OPDs with different Y6 weight fractions.

Fig. S9. (a-b) Dependence of short-circuit current on light intensity of OPDs with different Y6 weight fractions and ETLs.

Fig. S10. (a-f) Carrier mobility of OPDs with different Y6 weight fractions.

Fig. S11. (a-c) The carrier mobility of OPDs with different ETLs.

Fig. S12. (a-h) The response speed of OPDs with different Y6 weight fractions and ETLs. (i) -3dB cutoff frequency of OPDs with different Y6 weight fractions.

Fig. S13. Oximetry monitoring using a commercial oximeter (model: KE-6007)

3 Supporting Tables

 $J_D(A \text{ cm}^{-2})$ EQE % /R D*shot (Jones) D* (Jones) Devices -0.1 V 650 nm 808 nm 650 nm 808 nm 650 nm 808 nm 0% Y6 1.4×10^{-5} 59%/0.31 2%/0.02 1.5×10¹¹ 6.3×10⁹ 4.6×10^{9} 1.7×10^{8} 10% Y6 2.4×10⁻⁶ 2.4×10^{11} 1.4×10^{11} 5.5×10¹¹ 3.2×10^{11} 40%/0.12 18%/0.12 20% Y6 5.5×10-7 42%/0.22 31%/0.20 5.3×10¹¹ 4.8×10¹¹ 5.8×10^{11} 5.3×10¹¹ 30% Y6 7.7×10-8 45%/0.24 34%/0.23 1.5×10^{12} 1.4×10^{12} 6.3×10^{11} 5.9×10¹¹ 1.1×10^{-5} 6.0×10¹¹ 6.0×10¹¹ 40% Y6 44%/0.23 35%/0.23 1.2×10^{11} 1.2×10¹¹ 5.5×10¹¹ 50% Y6 1.5×10⁻⁵ 38%/0.20 32%/0.21 9.2×1010 9.7×10¹⁰ 5.2×10^{11}

Table S1. Main performance parameters of OPDs with different Y6 weight fractions.

Table S2. Main performance parameters of OPDs with different ETLs.

ETL	$J_D(A \text{ cm}^{-2})$	$J_D(A \text{ cm}^{-2})$ EQE %/R $D^*_{shot}(Jones)$		(Jones)	D* (Jones)		
	-0.1 V	650 nm	808 nm	650 nm	808 nm	650 nm	808 nm
ZnO	77×10-8	45%/0.24	2/10/22	1 5×1012	1 4×1012	6 2×1011	5 0×1011
(control device)	/./~10*	4370/0.24	3470/0.23	1.3~10-	1.4^10-	0.3~10**	5.9~10
PDIN	2.9×10 ⁻⁷	43%/0.23	36%/0.24	7.5×10 ¹¹	7.8×10 ¹¹	6.0×10 ¹¹	6.2×10 ¹¹
PDIN/ZnO	2.6×10-5	34%/0.18	28%/0.18	6.2×10 ¹⁰	6.2×10 ¹⁰	4.7×10 ¹¹	4.8×10 ¹¹
ZnO/PDIN	1.4×10 ⁻¹⁰	49%/0.26	42%/0.27	3.8×10 ¹³	4.0×10 ¹³	1.2×10 ¹³	1.3×10 ¹³

Table S3. Tra	p density an	nd depletion	ı width of	OPDs with	different Y	6 weight fractions.

Devices	V_{bi}	$N_A ({\rm cm}^{-3})$	W	n KT/q
0% Y6	1.27 V	6.57×10^{16}	95 nm	2.19 KT/q
10% Y6	1.31 V	3.36×10 ¹⁶	114 nm	1.46 KT/q
20% Y6	1.15 V	2.81×10^{16}	115 nm	1.38 KT/q
30% Y6	1.00 V	2.53×10 ¹⁶	117 nm	1.37 KT/q
40% Y6	1.16 V	3.59×10 ¹⁶	104 nm	1.54 KT/q
50% Y6	0.99 V	4.38×10 ¹⁶	86 nm	1.67 KT/q

Devices (Y6 weight fractions @ ETL)	DOS @ $0.5 \text{ eV} (\text{cm}^2 \text{ V}^{-1} \text{ S}^{-1})$
0% @ ZnO	3.90×10 ¹⁶
10% @ ZnO	2.99×10 ¹⁶
20% @ ZnO	1.01×10^{16}
30% @ ZnO	2.91×10 ¹⁵
40% @ ZnO	1.24×10^{16}
50% @ ZnO	3.84×10 ¹⁶
30% @ PDIN	5.64×10 ¹⁵
30% @ PDIN/ZnO	9.04×10 ¹⁵
30% @ ZnO/PDIN	2.06×10 ¹⁵

Table S4. Trap state density of OPDs with different Y6 weight fractions and different ETLs.

Table S5. Bimolecular recombination coefficients, carrier mobility,

Devices	α	$T_{max}\left(\mu s\right)$	$\mu (cm^2 V^{-1} S^{-1})$	$ au_{e,h}(\mu s)$	
0% Y6	0.939	1.834	1.031×10-4	3.630	
10% Y6	0.921	2.173	7.373×10 ⁻⁵	4.920	
20% Y6	0.910	2.301	6.637×10 ⁻⁵	6.226	
30% Y6	0.903	2.574	5.389×10 ⁻⁵	8.822	
40% Y6	0.870	3.029	3.391×10 ⁻⁵	12.082	
50% Y6	0.845	3.002	2.990×10 ⁻⁵	16.055	

and charge transfer time of OPDs.

Devices	Rise time	Fall time	Response speed	-3dB
(Y6 weight fraction @ ETL)	(µs)	(µs)	(µs)	(MHz)
0% @ ZnO	3.594	8.803	11.677	134
10% @ ZnO	3.326	6.575	9.901	236
20% @ ZnO	2.158	4.628	8.789	398
30% @ ZnO	1.292	2.990	4.282	625
40% @ ZnO	1.121	3.306	4.427	402
50% @ ZnO	1.173	4.967	6.140	467
30% @ PDIN	2.478	2.590	5.068	528
30% @ PDIN/ZnO	4.526	4.276	8.902	390
30% @ ZnO/PDIN	0.534	1.940	2.474	1000

Table S6. Response speed and -3dB bandwidth of OPDs with different Y6 weight fractions and ETLs.

Table S7. Comparison of performances of OPDs in this work with others.

A ativa Lavar	ETI	J_D	\mathbf{D} (A/W)	$\mathrm{D}^*_{\mathrm{shot}}$	D^*	2.4D	Dof
Active Layer	EIL	(A cm ⁻²)	κ (Α/ W)	(Jones)	(Jones)	-30D	Kel
PM7: D5: Y12	ZnO	3.60×10-9	0.400	3.20×10 ¹³		82.9 kHZ	[4]
PTB7-Th:		2 20 - 10 10	0.520	4.00×1013	4.72 - 1011	1 \ (117	[6]
PC ₇₁ BM: COTIC-4F	PEI-Zn	3.80×10-10	0.530	4.80×10 ¹³	4./3×10 ¹¹	1 MHZ	[5]
PIPCP: PC ₆₁ BM	ZnO		0.144	_	1.34×10 ¹¹	1 kHZ	[6]
PF3:IT-4F	ZnO	5.60×10-9	0.310	3.39×10 ¹³	7.40×10 ¹²	63.4 kHZ	[7]
TQ-3T: IEICO-4F	ZnO	2.30×10-6	0.050		1.03×10 ¹⁰	470 kHZ	[8]
PM6: Y6	PDINN	7.10×10 ⁻¹⁰	0.504	3.35×10 ¹³	_	176 kHZ	[9]
PTB7-Th:		1 40×10 10	0.270	4.02×1013	2 14 1013	1 \ \ (117	This
PC ₆₁ BM: Y6	ZnO/PDIN	1.40×10 ⁻¹⁰	0.270	4.03×10 ¹³	2.14×10 ¹³	I MHZ	work

4 Calculation of oximetry data

Extraction of PPG signals in 650 nm light					
AC+DC1	154.5	DC1	147.8	Ratio 1	0.045331529
AC+DC2	155.5	DC2	148.8	Ratio 2	0.045026882
AC+DC3	156.1	DC3	148.9	Ratio 3	0.0483546
AC+DC4	157.2	DC4	150.6	Ratio 4	0.043824701
AC+DC5	156.3	DC5	149.5	Ratio 5	0.04548495
AC+DC6	156.2	DC6	149.4	Ratio 6	0.045515395
AC+DC7	157.1	DC7	149.7	Ratio 7	0.049432198

Table S1. Extraction of PPG seven groups of arterial pulse signals (650 nm light).

Table S2. Extraction of PPG seven groups of arterial pulse signals (808 nm light).

Extraction of PPG signals in 808 nm light					
AC+DC1	140	DC1	130	Ratio 1	0.076923077
AC+DC2	141.5	DC2	131.8	Ratio 2	0.073596358
AC+DC3	143.2	DC3	133	Ratio 3	0.076691729
AC+DC4	142.5	DC4	132.8	Ratio 4	0.073042169
AC+DC5	141.9	DC5	131.8	Ratio 5	0.076631259
AC+DC6	141.4	DC6	131.7	Ratio 6	0.07365224
AC+DC7	141.7	DC7	131.1	Ratio 7	0.08085431

 Table S3. Calculation of blood oxygen data.

Modulati	on ratio	SPO ₂
ROS1	0.589309878	0.96057
ROS2	0.611808558	0.95504
ROS3	0.630506064	0.95045
ROS4	0.599991785	0.95794
ROS5	0.593556078	0.95952
ROS6	0.617977063	0.95353
ROS7	0.611373691	0.95515

Supporting References

- 1 X. Hou, K. Zhang, J. Li, J. Liang, W. Li, D. Yan, L. Liu, J. Zhang, J. Mater. Chem. C, 2023, 11, 9229-9237.
- 2 L. Lv, J. Yu, X. Sui, J. Wu, X. Dong, G. Lu, X. Liu, A. Peng, H. Huang, J. Mater. Chem. C, 2019, 7, 5739-5747.
- 3 S. Xing, J. Kublitski, C. Hänisch, L.C. Winkler, T. Li, H. Kleemann, J. Benduhn, K. Leo, *Adv. Sci.*, 2022, 9, 2105113.
- 4 Z. Du, H.M. Luong, S. Sabury, A.L. Jones, Z. Zhu, P. Panoy, S. Chae, A. Yi, H.J. Kim, S. Xiao, V.V. Brus, G.N.M. Reddy, J.R. Reynolds, T.-Q. Nguyen, *Adv. Mater.*, 2024, 36, 2310478.
- 5 Z. Lou, J. Tao, B. Wei, X. Jiang, S. Cheng, Z. Wang, C. Qin, R. Liang, H. Guo, L. Zhu, P.
 Müller Buschbaum, H. Cheng, X. Xu, *Adv. Sci.*, 2023, 10, 2304174.
- 6 S. Park, K. Fukuda, M. Wang, C. Lee, T. Yokota, H. Jin, H. Jinno, H. Kimura, P. Zalar, N. Matsuhisa, S. Umezu, G.C. Bazan, T. Someya, *Adv. Mater.*, 2018, **30**, 1802359.
- 7 B. Park, J. Jung, D. Lim, H. Lee, S. Park, M. Kyeong, S. Ko, S.H. Eom, S. Lee, C. Lee, S.C. Yoon, Adv. *Funct. Mater.*, 2022, **32**, 2108026.
- 8 P. Jacoutot, A.D. Scaccabarozzi, D. Nodari, J. Panidi, Z. Qiao, A. Schiza, A.D. Nega, A. Dimitrakopoulou-Strauss, V.G. Gregoriou, M. Heeney, C.L. Chochos, A.A. Bakulin, N. Gasparini, *Sci. Adv.*, 2023, 9, eadh2694.
- 9 Z. Yang, Efficient Noise Suppression via Controlling the Optical Cavity in Near-Infrared Organic
 Photoplethysmography Sensors, J. Mater. Chem. C, 2024, 12, 3261-3271.