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Figure S1 Characterization of graphene/MoS2/graphene photoconductive device. (a) Optical image 
of the graphene/MoS₂/graphene photoconductive device. (b) I-V characteristics of the device. (c) 
Potential distribution between graphene and MoS2. The inset is KPFM image of the 
graphene/MoSe2 heterojunction. (d) Transfer characteristics of the device.

Figure S2 Noise power density-dependent frequency of the graphene/MoS2/graphene 
photoconductive device at varying Vds values.



Figure S3 Photodetection characteristics of the graphene/MoS2/graphene photoconductive detector 
under 650 nm illumination. (a) Photocurrent dependence on light power density. (b) Response and 
recovery times of the device. (c) Time-dependent photoresponse of the device under varying light 
power densities at Vds=1 V. (d) R and D* as functions of light power density.



Figure S4 Photodetection characteristics of the graphene/MoS2/NbSe2 photovoltaic detector under 
650 nm illumination. (a) Output characteristics of the photovoltaic detector under dark and different 
light power densities. (b) Time-dependent photoresponse of the device under varying light power 
densities at Vds=0 V. (c) Dependence of short-circuit current and open-circuit voltage on light power 
density. (d) Noise power density-dependent frequency of the device under Vds=0 V. (e) R and D* 
under varying light power densities. (f) Response and recovery times of the device.



Figure S5 Noise power density-dependent frequency of the photo-MESFET at Vds = 1 V and Vgs=-
0.5 V.

1. External Quantum Efficiency

The EQE is a critical metric for evaluating the device’s ability to convert incident 

photons into effective carriers. It is calculated using:
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Where R is the responsivity, hν is the photon energy (h: Planck’s constant, ν: photon 

frequency), and e is the elementary charge. The calculated EQE reaches 1826% under 

650 nm illumination, demonstrating ultra-efficient photon-to-electron conversion. 

2. Photoconductive Gain

The photoconductive gain (G) of the photo-MESFET is calculated using:1-3
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Where Vph is the photovoltage generated at the heterojunction interface, gm is the 

transconductance (reflecting gate voltage modulation of channel current), and P is the 

incident optical power. The calculated gain is G≈47. This high gain originates from the 

photovoltage-driven depletion modulation mechanism—the photovoltage compresses 

the depletion region width, significantly enhancing channel conductivity.”



Figure S6 Normalized photocurrent as a function of the modulated frequency under 650 nm light at 
Vds = 1 V and Vgs=-0.5 V.

Figure S7 Response and recovery times of the photo-MESFET under varying drain-source bias: (a) 
Vds=0.1 V, (b) Vds=0.5 V, and (c) Vds=1.5 V. (d) Vds-dependent trends of τrise and τfall.



Figure S8. Schematic diagram of the fabrication process of the all-2D vdWs MESFET device.

Table S1 Comparisons of important performance parameters of the proposed photo-MESFET with 
other reported photodetectors

Structure Ion/Ioff R (A/W) D* (Jones) τrise/τfall References

NbSe2/MoS2 MESFET 4.1×105 9.56@650 nm 2.23×1010 206/79 μs This work

NiOx/MoS2 MESFET 2.85×103 1.1@520 nm 2 ms 4

Graphene/Si sMESFET ~11 ~103@532 nm 2.3×1012 6/232 μs 3

Ge/MoS2 JFET 66@532 nm 5.3×109 40/160 μs 5

PdSe2/MoS2 JFET 102 600@532 nm 1011 100/37 ms 6

MoS2 Photoconductor 6×103 103@647 nm 13/11 s 7

TalrTe4/MoS2 Photodiode 104 0.75@635 nm 7×1011 7.9/7.1 ms 8
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