Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Photo-driven All-2D van der Waals metal-semiconductor field-effect transistors for high-performance photodetection

Chunyu Li^a, Zhiming Wu^{a,b,*}, Meiyu He^a, Chaoyi Zhang^a, Silu Peng^a, Jiayue Han^a, Laijiang Wei^a

Xiang Dong^{a,b}, Jun Gou^{a,b,*}, Jun Wang^{a,b,c,*} and Yadong Jiang^{a,b}

a School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China.

b State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic

Science and Technology of China, Chengdu 610054, China.

c Key Laboratory of Science and Technology on Infrared Detector, Luoyang 471099, China

*Correspondence should be addressed to Z. Wu (Email: <u>zmwu@uestc.edu.cn</u>); J. Wang (Email:

wjun@uestc.edu.cn); J. Gou (Email: goujun@uestc.edu.cn).

Figure S1 Characterization of graphene/MoS₂/graphene photoconductive device. (a) Optical image of the graphene/MoS₂/graphene photoconductive device. (b) I-V characteristics of the device. (c) Potential distribution between graphene and MoS₂. The inset is KPFM image of the graphene/MoSe₂ heterojunction. (d) Transfer characteristics of the device.

Figure S2 Noise power density-dependent frequency of the graphene/MoS $_2$ /graphene photoconductive device at varying V_{ds} values.

Figure S3 Photodetection characteristics of the graphene/MoS₂/graphene photoconductive detector under 650 nm illumination. (a) Photocurrent dependence on light power density. (b) Response and recovery times of the device. (c) Time-dependent photoresponse of the device under varying light power densities at V_{ds} =1 V. (d) R and D* as functions of light power density.

Figure S4 Photodetection characteristics of the graphene/MoS₂/NbSe₂ photovoltaic detector under 650 nm illumination. (a) Output characteristics of the photovoltaic detector under dark and different light power densities. (b) Time-dependent photoresponse of the device under varying light power densities at V_{ds} =0 V. (c) Dependence of short-circuit current and open-circuit voltage on light power density. (d) Noise power density-dependent frequency of the device under V_{ds} =0 V. (e) R and D^{*} under varying light power densities. (f) Response and recovery times of the device.

Figure S5 Noise power density-dependent frequency of the photo-MESFET at $V_{ds} = 1$ V and $V_{gs} = -0.5$ V.

1. External Quantum Efficiency

The EQE is a critical metric for evaluating the device's ability to convert incident photons into effective carriers. It is calculated using:

$$EQE = \frac{Rh\nu}{e} \times 100\%$$
(1)

Where R is the responsivity, hv is the photon energy (h: Planck's constant, v: photon frequency), and e is the elementary charge. The calculated EQE reaches 1826% under 650 nm illumination, demonstrating ultra-efficient photon-to-electron conversion.

2. Photoconductive Gain

The photoconductive gain (G) of the photo-MESFET is calculated using:¹⁻³

$$G = \frac{V_{ph} \times g_m \times h\nu}{e \times P} \tag{2}$$

Where V_{ph} is the photovoltage generated at the heterojunction interface, g_m is the transconductance (reflecting gate voltage modulation of channel current), and P is the incident optical power. The calculated gain is G \approx 47. This high gain originates from the photovoltage-driven depletion modulation mechanism—the photovoltage compresses the depletion region width, significantly enhancing channel conductivity."

Figure S6 Normalized photocurrent as a function of the modulated frequency under 650 nm light at V_{ds} = 1 V and V_{gs} =-0.5 V.

Figure S7 Response and recovery times of the photo-MESFET under varying drain-source bias: (a) $V_{ds}=0.1 V$, (b) $V_{ds}=0.5 V$, and (c) $V_{ds}=1.5 V$. (d) V_{ds} -dependent trends of τ_{rise} and τ_{fall} .

Figure S8. Schematic diagram of the fabrication process of the all-2D vdWs MESFET device.

other reported photodetectors					
Structure	I_{on}/I_{off}	R (A/W)	D* (Jones)	τ_{rise}/τ_{fall}	References
NbSe ₂ /MoS ₂ MESFET	4.1×10 ⁵	9.56@650 nm	2.23×10 ¹⁰	206/79 µs	This work
NiO _x /MoS ₂ MESFET	2.85×10 ³	1.1@520 nm		2 ms	4
Graphene/Si sMESFET	~11	~10 ³ @532 nm	2.3×10 ¹²	6/232 µs	3
Ge/MoS ₂ JFET		66@532 nm	5.3×10 ⁹	40/160 µs	5
PdSe ₂ /MoS ₂ JFET	10 ²	600@532 nm	1011	100/37 ms	6
MoS ₂ Photoconductor	6×10 ³	10 ³ @647 nm		13/11 s	7
TalrTe ₄ /MoS ₂ Photodiode	104	0.75@635 nm	7×10 ¹¹	7.9/7.1 ms	8

Table S1 Comparisons of important performance parameters of the proposed photo-MESFET with other reported photodetectors

References

- 1. V. Adinolfi and E. H. Sargent, *Nature*, 2017, **542**, 324-327.
- N. Guo, L. Xiao, F. Gong, M. Luo, F. Wang, Y. Jia, H. Chang, J. Liu, Q. Li, Y. Wu, Y. Wang, C. Shan, Y. Xu, P. Zhou and W. Hu, *Adv. Sci.*, 2020, 7, 1901637.
- 3. J. Fu, C. Nie, F. Sun, H. Jiang, Y. Li, G. Li and X. Wei, Adv. Opt. Mater., 2023, 11, 2201983.
- H. S. Lee, S. S. Baik, K. Lee, S. W. Min, P. J. Jeon, J. S. Kim, K. Choi, H. J. Choi, J. H. Kim and S. Im, *ACS nano*, 2015, 9, 8312-8320.
- B. Wang, L. Wang, Y. Zhang, M. Yang, D. Lin, N. Zhang, Z. Jiang, M. Liu, Z. Zhu and H. Hu, Adv. Funct. Mater., 2021, 32, 2110181.
- 6. H. Wang, Z. Li, D. Li, X. Xu, P. Chen, L. Pi, X. Zhou and T. Zhai, Adv. Funct. Mater., 2021, 31,

2106105.

- J. F. G. Marin, D. Unuchek, K. Watanabe, T. Taniguchi and A. Kis, *npj 2D Mater. Appl.*, 2019, 3, 14.
- L. Zhang, X. Han, S. Zhang, H. Wang, Y. Huang, Z. Zheng, N. Huo, W. Gao and J. Li, Adv. Electron. Mater., 2022, 8, 2200551.